1 Groups

1.1 Definitions and Properties

A **permutation** of a set X is a bijective function whose domain and range are X. In other words, it is a bijective function:

 $\pi:X\to X$

A group consists of a set G and a composition law:

 $G \times G \to G \quad (g_1, g_2) \to g_1 \cdot g_2$

Satisfying the following axioms:

Identity Axiom: There exists an element $e \in G$ such that, for all $g \in G$:

 $e \cdot g = g \cdot e = g$

Inverse Axiom: For all $g \in G$ there is an element $g^{-1} \in G$ such that:

$$g \cdot g^{-1} = g^{-1} \cdot g = e$$

Associative Law: For all $g_1, g_2, g_3 \in G$, we have that:

$$g_1 \cdot (g_2 \cdot g_3) = (g_1 \cdot g_2) \cdot g_3$$

Commutative Law: While this is not necessary for G to be a group, if for all $g_1, g_2 \in G$ we have the following, G is commutative or abelian:

 $g_1 \cdot g_2 = g_2 \cdot g_1$

Let G be a group. Then:

(a): G has exactly one identity element.

(b): Each element of G has exactly one inverse.

(c): Let $g, h \in G$. Then $(g \cdot h)^{-1} = h^{-1} \cdot g^{-1}$.

(d): Let $g \in G$. Then $(g^{-1})^{-1} = g$.

The order of a group G, denoted #G, is the cardinality of the set of elements of G.

The order of an element $g \in G$ is the smallest integer $n \ge 1$ such that $g^n = e$. If no n exists, then g has infinite order.

Let G be a group, let $g \in G$. The order of g divides the order of G.

1.2 Examples of Groups

The set of integers modulo m, denoted $\mathbb{Z}/m\mathbb{Z}$, form the group of integers modulo m with addition as the group law.

The set of real numbers \mathbb{R} , the set of rational numbers \mathbb{Q} , and the set of complex numbers \mathbb{C} all form groups with addition as the group law. The set of positive or non-zero real numbers also form groups with multiplication as the group law.

A group G is a cyclic group if there is an element $g \in G$ such that $G = \{...g^{-1}, e, g, g^2, ...\}$. In other words, all other elements are generated by g, and g is called the generator of G. We denote the cyclic groups of the integers up to n as C_n .

The symmetric group of X, denoted S_X , is the collection of all permutations of X, with the group law being the composition of permutations.

The group of $n \times n$ matrices, A, such that $det(A) \neq 0$ is the **general linear group**, denoted $GL_n(X)$, where X is the group where the entries live in.

The group of symmetries of a regular *n*-gon is the *n*'th dihedral group, denoted \mathcal{D}_n . There are exactly *n* rotations and *n* flips in this group.

The quaternion group Q is a non-commutative group with eight elements with operations you can look up:

 $\mathcal{Q} = \{\pm 1, \pm i, \pm j, \pm k\}$

1.3 Group Homomorphisms

Let G and G' be groups. A group homomorphism from G to G' is a function $\phi: G \to G'$ such that, for all $g_1, g_2 \in G$:

$$\phi(g_1 \cdot g_2) = \phi(g_1) \cdot \phi(g_2)$$

The above is sufficient to prove the following two properties:

(a): Let $e \in G$ be the identity element of G. Then $\phi(e)$ is the identity element of G'. (b): Let $g \in G$. Then $\phi(g^{-1}) = \phi(g)^{-1}$.

Let G_1 and G_2 be groups. These groups are **isomorphic** if there exists a bijective homomorphism $\phi : G_1 \to G_2$, which we call an **isomorphism**. In this case, G_1 and G_2 are the same group, just relabelled.

1.4 Subgroups, Cosets, and Lagrange's Theorem

Let G be a group. A **subgroup of** G is a subset $H \subset G$ that is also a group under G's group law. That is, H satisfies: (a): For all $h_1, h_2 \in H$, $h_1 \cdot h_2 \in H$. (b): $e \in H$. (c): For all $h \in H$, $h^{-1} \in H$.

We note that all groups have two trivial subgroups, $\{e\}$ and G itself.

Let G be a group, let $g \in G$ have order n. The cyclic subgroup of G generated by g is:

$$\langle g \rangle = \{...g^{-1}, e, g, g^2...\}$$

It is isomorphic to the cyclic group C_n .

Let $\phi: G \to G'$ be a group homomorphism. The **kernel of** ϕ is the set:

$$ker(\phi) = \{g \in G : \phi(g) = e'\}$$

Let $\phi: G \to G'$ be a group homomorphism. Then:

(a): $ker(\phi)$ is a subgroup of G.

(b): ϕ is injective if and only if $ker(\phi) = \{e\}$.

Let G be a group, and let $H \subset G$ be a subgroup of G. For all $g \in G$, the (left) coset of H attached to g is the set:

 $gH = \{gh : h \in H\}$

- Let G be a finite group, and let $H \subset G$ be a subgroup of G. Then:
- (a): Every element of G is in some coset of H.
- (b): Every coset of H has the same number of elements.
- (c): Let $g_1, g_2 \in G$. Then either:

$$g_1H = g_2H$$
 or $g_1H \cap h_2H = \emptyset$

Lagrange's Theorem: Let G be a finite group, and let $H \subset G$ be a subgroup of G. Then the order of H divides the order of G.

Let G be a group and let $H \subset G$ be a subgroup of G. The **index of** H **in** G, denoted (G : H), is the number of distinct cosets of H.

Let G be a finite group, and let $g \in G$. Then the order of g divides the order of G.

Let p be a prime and let G be a group of order p. Then G is isomorphic to \mathcal{C}_p . In other words, G is a cyclic group.

Let p be a prime and let G be a group of order p^2 . Then G is an abelian group.

(Sylow's Theorem): Let G be a finite group, let p be prime, and suppose that $p^n \mid \#G$ for some $n \ge 1$. Then G has a subgroup of order p^n .

1.5 Products of Groups

Let G_1 and G_2 be groups. The **product** of G_1 and G_2 is the group:

$$G_1 \times G_2 = \{(a, b) : a \in G_1, b \in G_2\}$$

Where:

$$(a,b) \cdot (a',b') = (a \cdot a', b \cdot b')$$

(Structure Theorem for Finite Abelian Groups): Let G be a finite abelian group. Then there are integers $m_1...m_r$ where each m_i is a prime power such that:

$$G \cong (\mathbb{Z}/m_1\mathbb{Z}) \times \dots \times (\mathbb{Z}/m_r\mathbb{Z})$$

2 Rings

A ring R is a set with two operations, called **addition** (a + b) and **multiplication** $(a \cdot b)$, satisfying the following axioms:

- (a): Addition Properties: The set R with addition law + is an abelian group with identity 0_R .
- (b): Multiplication Properties: The set R with multiplication law \cdot satisfies Identity Law and Associative Law.
- (c): **Distributive Law:** For all $a, b, c \in R$ we have:

$$a \cdot (b+c) = a \cdot b + a \cdot c$$

$$(b+c) \cdot a = b \cdot a + c \cdot a$$

(d): While this is not necessary for R to be a ring, if for all $a, b \in R$, $a \cdot b = b \cdot a$, the ring is commutative.

Let R be a ring. Then:

- (a): For all $a \in R$, $0_R \cdot a = 0_R$.
- (b): For all $a, b \in R$, $(-a) \cdot (-b) = a \cdot b$.

Let R and R' be rings. A **ring homomorphism** from R to R' is a function $\phi : R \to R'$ satisfying: (a): $\phi(1_R) = 1_{R'}$. (b): $\phi(a + b) = \phi(a) + \phi(b)$. (c): $\phi(a \cdot b) = \phi(a) \cdot \phi(b)$. We say that R and R' are **isomorphic** if there is a bijective ring homomorphism $\phi : R \to R'$, called an **isomorphism**.

The **kernel** of ϕ is the set of elements:

```
ker(\phi) = \{a \in R : \phi(a) = 0_{R'}\}\
```

2.1 Examples of Rings

The following are rings.

 $\mathbb{Z}/m\mathbb{Z}$ $\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\}$ $R[x] = \{\text{polynomials with coefficients in } R.\}$ $\mathbb{H} = \{a + bi + cj + dk : a, b, c, d \in \mathbb{R}\}$

Let R be a ring. There is a unique homomorphism $\phi : \mathbb{Z} \to R$.

2.2 Properties of Rings

A field is a commutative ring R where every non-zero element of R has a multiplicative inverse.

Let R be a commutative ring. R has the **cancellation property** if for all $a, b, c \in R$, the following holds:

 $ab=ac\wedge a\neq 0\iff b=c$

Let R be a ring. An element $a \in R$ is called a **zero divisor** if $a \neq 0$ and there exists a non-zero element $b \in R$ such that ab = 0. The ring R is an **integral domain** if it has no zero divisors.

2.3 Unit Groups and Product Rings

Let R be a commutative ring. The group of units of R is the subset $R^* \subset R$ defined by:

$$R^* = \{ a \in R : \exists b \in R, ab = 1 \}$$

Elements of R^* are called **units**.

The set of units R^* is a group with group law being ring multiplication.

Let $m \ge 1$ be an integer. Then:

$$(\mathbb{Z}/m\mathbb{Z})^* = \{a \mod m : gcd(a,m) = 1\}$$

If p is a prime, then $\mathbb{Z}/m\mathbb{Z}$ is a field, denoted \mathbb{F}_p

Let $R_1...R_n$ be rings. The **product** of $R_1...R_n$ is the ring:

$$R_1 \times \dots \times R_n = \{(a_1, \dots a_n) : a_1 \in R_1 \dots a_n \in R_n\}$$

Let $R_1...R_n$ be rings. Then:

$$(R_1 \times \ldots \times R_n)^* \cong R_1^* \times \ldots \times R_n^*$$

2.4 Ideals and Quotient Rings

Let R be a commutative ring. An ideal of R is a non-empty subset $I \subseteq R$ such that:

- (a): If $a, b \in I, a + b \in I$,
- (b): If $a \in I$ and $r \in R$, then $ra \in I$.

Let R be a commutative ring, and let $c \in R$. The **principal ideal generated by** c, denoted cR or (c), is the set of all multiples of c:

 $cR = (c) = \{rc : r \in R\}$

Let R be a commutative ring and let $I \subseteq R$ be an ideal of R. For each element $a \in R$, the coset of a is the set:

 $a + I = \{a + c : c \in I\}$

If $a - b \in I$, we say that a is congruent to b modulo I, denoted:

 $a \equiv b$

And we define addition and multiplication of cosets as follows:

$$(a + I) + (b + I) = (a + b) + I$$

 $(a + I) \cdot (b + I) = (a \cdot b) + I$

And we denote the collection of distinct cosets by R/I, called a quotient ring.

Let R be a commutative ring, and let $I \subseteq R$ be an ideal of R. Then:

(a): Let a + I and a' + I be two cosets. Then a' + I = a + I if and only if $a' - a \in I$.

(b): Addition and multiplication of cosets is well defined.

(c): Addition and multiplication of cosets turns R/I into a commutative ring, called a **quotient ring**.

Let R be a commutative ring.

(a): Let $I \subseteq R$ be an ideal of R. Then the following map is a ring homomorphism whose kernel is I:

$$\psi: R \to R/I, a \to a + R$$

(b): Let $\phi : R \to R'$ be a ring homomorphism. Then: (i): The kernel of ϕ is an ideal of R.

(ii): ϕ is injective if and only if $ker(\phi) = \{0\}$

(iii): There is a well-defined injective ring homomorphism:

$$\overline{\phi}: R/I_{\phi} \to R', \overline{\phi}(a+I_{\phi}) = \phi(a)$$

Let R be a ring, and let $\phi : \mathbb{Z} \to R$ be the unique homomorphism deterined by the condition that $\phi(1) = 1_R$. Then, there is a unique integer $m \ge 0$, called the **characteristic** of R, such that:

$$ker(\phi) = m\mathbb{Z}$$

Let p be prime, and let R be a commutative ring of characteristic p. Then the following map is a ring homomorphism, called the **Frobenius homomorphism of** R:

$$f: R \to R, f(a) = a^p$$

We notice also that for all $a, b \in R$ and all $n \ge 0$, we have:

$$(a+b)^{p^n} = a^{p^n} + b^{p^n}$$

2.5 Prime Ideals and Maximal Ideals

Let R be a commutative ring. An ideal $I \subseteq R$ is a **prime ideal** if $I \neq R$ and, if whenever $ab \in I$, either $a \in I$ or $b \in I$. Or, in other words, for two $a, b \notin I$, $ab \notin I$.

Let R be a commutative ring. An ideal I is called a **maximal ideal** if $I \neq R$ and if there is no ideal properly contained between I and R. In other words, if J is an ideal and $I \subseteq J \subseteq R$, either J = I or J = R.

Let R be a commutative ring, and let I be an ideal with $I \neq R$. Then:

(a): I is a prime ideal if and only if the quotient ring R/I is an integral domain.

(b): I is a maximal ideal if and only if the quotient ring R/I is a field.

Corollary: Every maximal ideal is a prime ideal.

3 Vector Spaces

A field is a commutative ring F with the property that for every non-zero $a \in F$, where is an element $b \in F$ such that ab = 1.

Let F be a field. A vector space with field of scalars F, or, an F-vector space, is an abelian group V with a rule for multiplying a vector $v \in V$ by a scalar $c \in F$ to obtain a new vector $cv \in V$. Vector addition and scalar multiplication satisfy the following axioms:

Identity Law: For all $v \in V$:

1v = v

Distributive Law #1: For all $v_1, v_2 \in V, c \in F$:

 $c(v_1 + v_2) = cv_1 + cv_2$

Distributive Law #2: For all $v \in V$, $c_1, c_2 \in F$:

 $(c_1 + c_2)v = c_1v + c_2v$

Associative Law: For all $v \in V$, $c_1, c_2 \in F$:

$$(c_1c_2)v = c_1(c_2v)$$

Let V be an F-vector space. Then: (a): For all $v \in V$, 0v = 0. (b): For all $v \in V$, (-1)v + v = 0.

Let F be a field, and let V and W be F-vector spaces. A linear transformation from V to W is a function:

 $L:V\to W$

Satisfying for all $v_1, v_2 \in V, c_1, c_2 \in F$:

$$L(c_1v_1 + c_2v_2) = c_1L(v_1) + c_2L(v_2)$$

3.1 Bases and Dimension

Let V be an F-vector space. A finite basis for V is a finite set of vectors $\mathcal{B} = \{v_1, ..., v_n\} \subset V$ such that every vector $v \in V$ can be uniquely written as a linear combination of elements in \mathcal{B} .

Let V be an F-vector space, and let $\mathcal{A} = \{v_1, ..., v_n\}$ be a set of vectors in V. Then:

(a): The set \mathcal{A} spans V is every vector in V is a linear combination of the vectors in \mathcal{A} . The set of linear combinations of vectors in \mathcal{A} is called the span of \mathcal{A} , denoted $Span(\mathcal{A})$.

(b): The set \mathcal{A} is **linearly independent** if the only solution to the following is the trivial solution:

$$a_1v_2 + \ldots + a_nv_n = 0$$

Let v be an F-vector space, and let $\mathcal{A} = \{v_1, ..., v_n\}$ be a set of vectors in V. Then \mathcal{A} is a basis for V if and only if \mathcal{A} spans V and is linearly independent.

Let V be an F-vector space, let \mathcal{A} be a finite set of vectors in V that spans V, and let $\mathcal{L} \subseteq \mathcal{S}$ be a subset of \mathcal{S} that is linearly independent. Then there is a basis for V satisfying:

 $\mathcal{L} \subseteq \mathcal{B} \subseteq \mathcal{S}$

Let V be a vector space with a finite basis. Then every basis for V has the same number of elements.

Let V be a vector space with a finite basis. The **dimension** of V is the number of vectors in a basis of V, denoted $dim_F(V)$. We know that this is well defined.

Let V be an F-vector space, let S be a finite set of vectors in V that span V, and let \mathcal{L} be a set of vectors that is linearly independent. Then, given any vectors $v \in \mathcal{L} - S$, we can find a vector $w \in S - \mathcal{L}$ so that the following is still a spanning set:

 $(S - \{w\}) \cup \{v\}$

Let V be an F-vector space, let $S \subset V$ be a finite set that spans V, and let $\mathcal{L} \subset V$ be a linearly independent set. Then:

 $\#\mathcal{L} \leq \#\mathcal{S}$

4 Fields

A field is a commutative ring F with the property that for every non-zero $a \in F$ there is an element $b \in F$ such that ab = 1.

Let R be a commutative ring. The **unit group of** R is the group:

$$R^* = \{a \in R : \exists b \in R, ab = 1\}$$

We can use this define a field as:

$$F^* = \{a \in F : a \neq 0\} = F - \{0\}$$

Let F and K be fields, and let $\phi: F \to K$ be a ring homomorphism. Then:

(a): ϕ is injective.

(b): Let $a \in F^*$. Then $\phi(a^{-1}) = \phi(a)^{-1}$.

A skew field, also called a division ring, is a ring where all non-zero elements have multiplicative inverses, but the ring is not necessarily commutative.

A famous result of Wedderburn says that all finite skew fields are fields.

4.1 Subfields and Extension Fields

Let K be a field. A subfield of K is a subset $F \subset K$ that it itself a field using the addition and multiplication operations from K.

Let F be a field. An extension field of F is a field K such that F is a subfield of K. We write K/F to indicate that K is an extension field of F.

Let L/F be an extension of fields, and let $\alpha_1, \dots, \alpha_n \in L$. Then there is a unique field K such that:

- (a): $F \subset K \subseteq L$.
- (b): $\alpha_1, \dots, \alpha_n \in K$.
- (c): If K' is a field satisfying $F \subseteq K' \subseteq L, K \subseteq K'$.

Let K/F be an extension of fields. The **degree of** K **over** F, denoted [K : F], is the dimension of K when viewed as an F-vector space. If [K : F] is finite, then K/F is a **finite extension** - otherwise, K/F is an **infinite extension**.

Let L/K/F be extensions of fields. Then:

$$[L:F] = [L:K][K:F]$$

As long as all of [L:F], [L:K], [K:F] are finite, or if [L:F] is infinite, then either [L:K] or [K:F] is infinite.

4.2 Polynomial Rings

Let F be a field, and let $f(x) \in F[x]$ be a non-zero polynomial, written as:

 $f(x) = a_0 + a_1 x + \dots + a_d x^d$

The **degree** of f is:

deg(f) = d

Moreover, if $a_d = 1$, then f is a **monic polynomial**.

Let $f_1(x), f_2(x) \in F[x]$ be non-zero polynomials. Then:

$$deg(f_1f_2) = deg(f_1) + deg(f_2)$$

Let F be a field, and let $f(x), g(x) \in F[x]$ be polynomials with $g(x) \neq 0$. Then there are unique polynomials $q(r), r(x) \in F[x]$ with deg(r) < deg(g) satisfying:

f(x) = g(x)q(x) + r(x)

Let F be a field and let $I \subseteq F[x]$ be an ideal in the ring F[x]. Then I is a principal ideal.

4.3 Building Extension Fields

Let F be a field. A non-constant polynomial $f(x) \in F[x]$ is **reducible (over** F) if there exists non-constant polynomials $g(x), h(x) \in F[x]$ such that f(x) = g(x)h(x). An **irreducible** polynomial is a non-constant polynomial that has no such non-trivial factorizations in F[x].

Let F be a field, and let $f(x) \in F[x]$ be a non-zero polynomial. The following are equivalent:

- (a): The polynomial f(x) is irreducible.
- (b): The principal ideal f(x)F[x] generated by f(x) is a maximal ideal.
- (c): The quotient ring F[x]/f(x)F[x] is a field.

Let F be a field, let $f(x) \in F[x]$ be an irreducible polynomial, let $I_f = f(x)F[x]$ be the principal ideal generated by f(x) and let $K_f = F[x]/I_f$ be the indicated quotient ring.

(a): The ring K_f is a field.

(b): The field K_f is a finite extension of the field of F. Its degree is given by:

 $[K_f:F] = deg(f)$

(c): The polynomial f(x) has a root in K_f .

4.4 Finite Fields

NOTE: We are missing some stuff with regards to counting polynomials, since it is painful. Refer to the textbook for this!

Let F be a finite field. Then,

(a): The characteristic of F is prime.

(b): Let p = char(F). Then the finite field \mathbb{F}_p is a subfield of F, in the sense that there exists a unique injective homomorphism from \mathbb{F}_p to F.

(c): The number of elements of F is given by:

 $\#F = p^{[F:\mathbb{F}_p]}$

Let p be prime, and let $d \ge 1$. Then the ring $\mathbb{F}_p[x]$ contains an irreducible polynomial of degree d.

Let p be a prime and let $d \ge 1$. Then,

(a): There exists a field F containing exactly p^d elements.

(b): Any two fields containing p^d elements are isomorphic.

5 Groups Continued

5.1 Normal Subgroups and Quotient Groups

Let G be a group and let H be a subgroup of G. We denote the set of (left) cosets of G by:

 $G/H = \{(\text{left}) \text{ cosets of } H\}$

Let G be a group, let $H \subseteq G$ be a subgroup of G, and let C_1 and C_2 be cosets of H. We define the **product** of C_1 and C_2 by the rule:

 $\mathcal{C}_1 \cdot \mathcal{C}_2 = g_1 g_2 H$

For some $g_1 \in \mathcal{C}_1$ and some $g_2 \in \mathcal{C}_2$. Note that this is only well defined if H is a normal subgroup.

Let G be a group, let $H \subseteq G$ be a subgroup of G, and let $g \in G$. The g-conjugate of H is the subgroup:

$$g^{-1}Hg = \{g^{-1}hg : g \in G\}$$

Let G be a group, let $H \subseteq G$ be a subgroup of G, and let $g \in G$. H is a **normal subgroup of** G is, for all $g \in G$,

 $g^{-1}Hg = H$

If G is abelian, than all subgroups are normal. All groups G trivially have two normal subgroups, $\{e\}$ and G. If these are the only two subgroups, then G is called a **simple group**.

Let $\phi: G \to G'$ be a group homomorphism. Then $ker(\phi)$ is a normal subgroup of G.

Let G be a group and let $H \subset G$ be a subgroup. Then:

(a): If $g^{-1}Hg \subseteq H$ for all $g \in G$, then H is a normal subgroup of G.

- (b): For all $g \in G$, $g^{-1}Hg$ is a subgroup of G.
- (c): For all $g \in G$, the map $H \to g^{-1}Hg$ defined by $h \to g^{-1}hg$ is a group isomorphism.

Let G be a group, and let $H \subset G$ be a normal subgroup of G. Let $g_1, g'_1, g_2, g'_2 \in G$ be elements such that:

 $g_1'H = g_1H \wedge g_2'H = g_2H$

Then:

 $g_1'g_2'H = g_1g_2H$

Let G be a group, and let $H \subset G$ be a normal subgroup of G. Then:

(a): The collection of cosets G/H is a group with the well-defined group operation:

$$g_1 H \cdot g_2 H = g_1 g_2 H$$

(b): The following map is a homomorphism with $ker(\phi) = H$:

$$\phi: G \to G/H, \phi(g) = gH$$

(c): Let $\psi: G \to G'$ be a homomorphism with $H \subseteq ker(\phi)$. Then there is a unique homomorphism:

 $\lambda: G/H \to G'$ such that $\lambda(gH) = \psi(g)$

(d): If we take $H = ker(\psi)$ in (c), then λ is injective. In particular, the following is an isomorphism onto the image of λ :

 $\lambda: G/ker(\phi) \to \lambda(G) \subseteq G'$

5.2 Groups Acting on Sets

Let G be a group, and let X be a set. An **action of** G **on** X is a rule that assigns each element $g \in G$ and each element $x \in X$ another element $g \cdot x \in X$ such that:

(1): For all $x \in X$, $e \cdot x = x$.

(2): For all $x \in X$ and all $g_1, g_2 \in G$, $(g_1g_2)x = g_1(g_2x)$.

Alternatively, we can define an action of G on X as a group homomorphism:

 $\alpha: G \to \mathcal{S}_X$

where α returns a permutation of the elements of X, and $g \cdot x = \alpha(g)(x)$.

Given a group G acting on a set X, we get two important quantities.

The **orbit of** x is the set of elements in X that G sends x to:

 $Gx = \{gx : g \in G\}$

The stabilizer of x is the set of elements in X that G leaves unchanged:

 $G_x = \{g \in G : gx = x\}$

Let G be a group that acts on a set X. Then:

(a): Every element of X is in some orbit.

(b): Let $x \in X$. G_x is a subgroup of G.

(c): Let $x \in X$. Then:

 $#G_x \cdot #Gx = #G$

(d): Let $x_1, x_2 \in X$. Then the orbits Gx_1 and Gx_2 are either equal or disjoint.

We say that G acts **transitively** on X if, for all $x \in X$, Gx = X.

5.3 Orbit-Stabilizer Counting Theorem

(Orbit-Stabilizer Counting Theorem): Let G be a finite group that acts on a finite set X. Then:

$$\#X = \sum_{i=1}^{n} \#Gx_i = \sum_{i=1}^{n} \frac{\#G}{\#G_{x_i}}$$

Let G be a group. The center of G, denoted Z(G), is the set of elements in G that commute with every element of G:

$$Z(G) = \{g \in G : gg' = g'g, \forall g' \in G\}$$

For subgroups $H \subseteq G$, the **normalizer** of H is:

$$N_G(H) = \{g \in G : g^{-1}Hg = H\}$$

Let p be a prime, and let G be a finite group with p^n elements for some $n \ge 1$. Then $Z(G) \neq \{e\}$.

Let p be a prime, and let G be a group with p^2 elements. Then G is abelian.

5.4 Sylow's Theorem: Part 1

Sylow's Theorem: Part 1. Let G be a finite group, let p be a prime, and let p^n be the largest power of p that divides #G. Then G has a subgroup of order p^n .

Let p be a prime, let $n \ge 0$, and let $m \ge 1$ with $p \nmid m$. Then $\binom{p^n m}{m^n}$ is not divisible by p.

Let G be a finite group, let p be a prime, and let p^n be the largest power of p that divides #G. A subgroup $H \subseteq G$ with $\#H = p^n$ is called a p-Sylow subgrou pof G. G must have at least one Sylow subgroup.

Sylow's Theorem. Let G be a finite group, and let p be a prime. Then:

(a): G has at least one p-Sylow subgroup.

(b): Let H_1 and H_2 be p-Sylow subgroups of G. Then H_1 and H_2 are conjugate: $H_1 = gH_2g^{-1}$ for some $g \in G$.

(c): Let H be a p-Sylow subgroup of G, and let k be the number of distinct p-Sylow subgroups of G. Then $k \mid \#G$ and $k \equiv 1 \mod p$.

5.5 Two Counting Lemmas

Let G be a finite group and let $H \subseteq G$ be a subgroup. Then H has exactly #G/#N(H) distinct conjugates in G.

Let G be a finite group, let A and B be subgroups of G, and let $AB = \{ab : a \in A, b \in B\}$. Then: $\#(AB) = \frac{\#A \cdot \#B}{\#(A \cap B)}$

Let H_1, H_2 be subgroups of G. The **double coset** associated to g is the set:

$$H_1gH_2 = \{h_1gh_2 : h_1 \in H_1, h_2 \in H_2\}$$

We can define a **double coset equivalence relation on** G by saying g g' if $g' = h_1gh_2$ for some $h_1 \in H_1$ and $h_2 \in H_2$.

Let H_1, H_2 be subgroups of G, and let $g \in G$. Then:

$$\#H_1gH_2 = \frac{\#H_1 \cdot \#H_2}{\#(g^{-1}G_1g \cap H_2)}$$

6 Rings Continued

6.1 Irreducible Elements and Unique Factorization Domains

Let R be a ring, and let $a \in R$ be a **unit** if it has a multiplicative inverse. The set of units of R, denoted R^* , is a group with group law multiplication.

Let R be a ring. A non-zero element $a \in R$ is **irreducible** if a is not a unit and the only way to factor a = bc is for either b or c to be a unit.

Let *R* be an integral domain. Then *R* is a **unique factorization domain (UFD)** if: (a): For all $a \in R$, we can write $a = b_1 \cdot b_2 \cdots b_n$ for irreducible $b_1, b_2, \ldots b_n \in R$. (b): Suppose $b_1, b_2, \ldots b_n \in R$ and $c_1, c_2, \ldots c_m \in R$ are all irreducible, and that their products are equal. Then n = m and each $c_i = u_i b_i$, after relabelling.

Let F be a field. Then the ring $F[x_1, \ldots, x_n]$ is a UFD.

6.2 Euclidean Domains and Principal Ideal Domains

A ring R is a **principal ideal domain (PID)** if it is an integral domain in which every ideal of R is principal.

A ring R is a **Euclidean domain** if it is an integral and there is a size function:

 $\sigma: R \to \{0, 1, 2, \ldots\}$

Such that:

(a): $\sigma(a) = 0 \iff a = 0$. (b): For all $a, b \in R$ with $b \neq 0$, there exist $q, r \in R$ such that:

$$a = bq + r, \sigma(r) < \sigma(b)$$

(3): For all $a, b \in R$ we have $\sigma(ab) = \sigma(a)\sigma(b)$.

Every Euclidean domain is a PID.

The ring of Gaussian integers $\mathbb{Z}[i]$ is a Euclidean domain with size function:

 $\sigma(a+bi) = a^2 + b^2$

Let R be a PID and let $c \in R$. The following are equivalent:

(a): c is irreducible.

(b): The principal ideal cR is maximal.

(c): The quotient ring R/cR is a field.

Let R be an integral domain, and let $a, b \in R$. We say that b **divides** a is we can write a = bc for some $c \in R$, and we denote this $b \mid a$. We note that this is equivalent to the assertion $a \in bR$, as well as $aR \subseteq bR$.

Let R be a PID and let $a, b, c \in R$. Suppose a is irreducible and $a \mid bc$. Then either $a \mid b$ or $a \mid c$ or both.

Let R be a PID and let $a, b_1, \ldots, b_n \in R$. Suppose that a is irreducible and divides the product of b_i 's. Then a divides at least one b_i .

Let R be a Euclidean domian with size function σ , and let $u \in R$. Then $u \in R^*$ if and only if $\sigma(u) = 1$.

Let R be a PID. Then R is a UFD.

The rings \mathbb{Z} , $\mathbb{Z}[i]$, and F[x] for a field F and UFDs.

6.3 Field of Fractions

Note: this part isn't easily summarizable. I recommend looking at the book.

Let R be an integral domain. There exists a field F, called the **field of fractions of** R, with the following properties:

(a): R is a subring of F.

(b): If R is a subring of some other field K, then there is a unique injective homomorphism $F \to K$ that takes R to itself by the identity map.

7 Fields Continued

7.1 Algebriac Numbers and Transcendental Numbers

Let L/F be an extension of fields, and let $\alpha \in L$. We say α is algebraic over F is α is the root of a non-zero polynomial in F[x]. Otherwise, α is transcendental over F.

Let L/F be an extension of fields,	and let $\alpha \in L$. $F[\alpha]$ is the subring of L given by:	
F[c	$\alpha] = \{a_0 + a_1\alpha + a_2\alpha^2 + \dots + a_n\alpha^n : n \ge 0, a_0 \dots a_n \in F\}$	(1)

We can also define $F[\alpha]$ as the image of the evaluation map:

$$E_{\alpha}: F[x] \to F, E_{\alpha}(f(x)) = f(\alpha) \tag{2}$$

(3)

 $F(\alpha)$ is the smallest subfield of L containing both F and α .

 $F[\alpha]$ is the smallest subring of L containing both F and α .

Let L/F be an extension of fields, and let $\alpha \in L$. Then:

 $F[\alpha] = F(\alpha) \iff \alpha$ is algebraic over F

Let F be a field, and let $f(x) \in F[x]$ be a non-zero polynomial. Then: (a): $\dim_F F[x]/f(x)F[x] = deg(f)$ (b): Let α be a root of f(x) in some extension field of F. Then $[F(\alpha) : F] \leq deg(f)$. (c): Let f(x) be irreducible in F[x] and $f(\alpha) = 0$. Then:

 $F(\alpha) \cong F[x]/f(x)F[x]$ and $[F(\alpha):F] = deg(f)$

If α and β are algebraic over F, then $\alpha + \beta$ and $\alpha\beta$ are as well.

7.2 Polynomial Roots and Multiplicative Subgroups

Let R be a commutative ring, and let $f(x) \in R[x]$ be a non-zero polynomial.

- (a): Let α be a root of f(x). Then there is a polynomial $g(x) \in R[x]$ such that $f(x) = (x \alpha)g(x)$. (b): Let R be an integral domain, and let $\alpha_1 \dots \alpha_n \in R$ be distinct roots of f(x). Then there is a polynomial $g(x) \in R[x]$ such that $f(x) = (a - \alpha_1) \cdots (x - \alpha_n)g(x)$.
- (c): Let R be an integral domain. A non-zero polynomial $f(x) \in R[x]$ of degree d has at most d distinct roots in R.

Let F be a field, and let $U \subseteq F^*$ be a finite subgroup of the multiplicative group of F. Then U is a cyclic group.

Let A be an abelian group, and let $\alpha\beta \in A$, and suppose that $o(\alpha) = m$ and $o(\beta) = n$.

(a): If gcd(m, n) is 1, then $\alpha\beta$ has order mn.

(b): If m is the largest order in elements of A. Then $n \mid m$.

7.3 Splitting Fields, Separability, and Irreducibility

Let F be a field, L/F an extension field, and let $f(x) \in F[x]$ be a non-zero polynomial. We say that f splits completely in L if f(x) factors as:

$$f(x) = c(x - \alpha_1)(x - \alpha_2) \cdots (c - \alpha_d)$$

For some $\alpha_1 \ldots \alpha_d \in L$.

We say that L is a **splitting field for** f(x) over F if f splits completely in L but does not split completely in any proper subfield of L.

Let F be a field and let $f \in F[x]$ be a non-zero polynomial. Then: (a): There exists an extension field L/F that is a splitting field for f(x) over F, (b): If L/F is a splitting field for f(x) over F.

(b): If L/F is a splitting field for f(x) over F, then the degree of L/F is bounded by:

 $[L:F] \le deg(f)!$

Let F be a field, let $f(x) \in F[x]$ be a polynomial, and write f(x) as:

$$f(x) = a_0 + a_1 x + \dots + a_d x^d$$

Then, the **formal derivative of** f(x) is:

$$f'(x) = a_1 + 2a_1x + \dots + da_dx^{d-1}$$

Let F be a field, let $f(x), g(x) \in F[x]$ be polynomials, and let $a, b \in F$ be constants. Then: (a) Sum Rule: (af + bg)'(x) = af'(x) + bg'(x).

(b) Product Rule: (fg)'(x) = f(x)g'(x) = f'(x)g(x).

(c) Chain Rule: $(f \circ g)'(x) = f'(g(x))g'(x)$.

(d) If F has characteristic 0, then f'(x) = 0 if and only if $f(x) \in F$ (f is a constant polynomial).

(e): If F has characteristic p > 0, then f'(x) = 0 if and only if there is a polynomial $f_1(x) \in F[x]$ such that $f(x) = f_1(x^p)$.

Let F be a field and let $f(x) \in F[x]$ be a non-zero polynomial. f is **separable** if its roots are distinct. If f has one or more repeated roots, it is **inseparable**.

Let F be a field, and let $f(x) \in F[x]$ be a non-constant polynomial. Then:

f is separable $\iff gcd(f(x), f'(x)) = 1$

Let F be a field. Then: (a): All irreducible $f(x) \in F[x]$ with a non-zero derivative are separable. (b): If F has characteristic 0, then every irreducible polynomial in F[x] is separable.

7.4 Finite Fields Revisited

Let p be a prime and let $d \ge 1$. Then: (a): There exists a field F containing exactly p^d elements. (b): Any two fields containing p^d elements are isomorphic.