Nick Young Abstract Algebra Cheat Sheet MATH 1530 — Fall 2020

1 Groups

1.1 Definitions and Properties

A permutation of a set X is a bijective function whose domain and range are X. In other words, it is a bijective function:

T: X =X

& J

e N
A group consists of a set G and a composition law:

GxG—=G (g1,92) = g1 g2

Satisfying the following axioms:

Identity Axiom: There exists an element e € G such that, for all g € G:
eg=g-e=g

Inverse Axiom: For all g € G there is an element g~! € G such that:

Associative Law: For all g1, g2, g3 € G, we have that:
g1 (92-93) = (91-92) - 93

Commutative Law: While this is not necessary for G to be a group, if for all g1,g2 € G we have the following, G is
commutative or abelian:

9192 =92 g1

Let G be a group. Then:

(a): G has exactly one identity element.

(b): Each element of G has exactly one inverse.
(c): Let g,h € G. Then (g-h)"t=h"1.g7 L
(d): Let g € G. Then (¢71)~t =g.

The order of a group G, denoted #G, is the cardinality of the set of elements of G.

The order of an element g € GG is the smallest integer n > 1 such that g = e. If no n exists, then g has infinite order.

N N
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Let G be a group, let g € G. The order of g divides the order of G.

1.2 Examples of Groups

{ The set of integers modulo m, denoted Z/mZ, form the group of integers modulo m with addition as the group law. J

The set of real numbers R, the set of rational numbers Q, and the set of complex numbers C all form groups with addition
as the group law. The set of positive or non-zero real numbers also form groups with multiplcation as the group law.

A group G is a cyclic group if there is an element g € G such that G = {...g71,e,9,9%,...}. In other words, all other
elements are generated by g, and ¢ is called the generator of G. We denote the cyclic groups of the integers up to n as C,.




N
The symmetric group of X, denoted Sx, is the collection of all permutations of X, with the group law being the
composition of permuations.

<
The group of n x n matrices, A, such that det(A) # 0 is the general linear group, denoted GL,(X), where X is the
group where the entries live in.

The group of symmetries of a regular n-gon is the n’th dihedral group, denoted D,,. There are exactly n rotations and
n flips in this group.

The quaternion group Q is a non-commutative group with eight elements with operations you can look up:

Q = {+1,+i, 47, +k}

1.3 Group Homomorphisms

- 2
Let G and G’ be groups. A group homomorphism from G to G’ is a function ¢ : G — G’ such that, for all g1, g2 € G:
o(g1 - g2) = B(g1) - #(g2)

The above is sufficient to prove the following two properties:

(a): Let e € G be the identity element of G. Then ¢(e) is the identity element of G’.
(b): Let g € G. Then ¢(g~1) = ¢(g)~ L.
N

Let G; and G5 be groups. These groups are isomorphic if there exists a bijective homomorphism ¢ : G; — G2, which we
call an isomorphism. In this case, G; and G5 are the same group, just relabelled.

1.4 Subgroups, Cosets, and Lagrange’s Theorem

-

Let G be a group. A subgroup of G is a subset H C G that is also a group under G’s group law. That is, H satisfies:

(a): For all hy,hy € H, hy - hy € H.
(b): e€ H.
(c): Forall h € H, h™! € H.

We note that all groups have two trivial subgroups, {e} and G itself.

Let G be a group, let g € G have order n. The cyclic subgroup of G generated by g is:
(@) ={-97 " eg.6"}

It is isomorphic to the cyclic group C,.

Let ¢ : G — G’ be a group homomorphism. The kernel of ¢ is the set:

ker(¢) ={g € G : ¢(g) = €'}

Let ¢ : G — G’ be a group homomorphism. Then:

(a): ker(¢) is a subgroup of G.
(b): ¢ is injective if and only if ker(¢) = {e}.
N




e R\

Let G be a group, and let H C G be a subgroup of G. For all g € G, the (left) coset of H attached to g is the set:

gH ={gh:h e H}

N J
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Let G be a finite group, and let H C G be a subgroup of G. Then:

(a): Every element of G is in some coset of H.

(b): Every coset of H has the same number of elements.

(c): Let g1,92 € G. Then either:

g H=gH or gitHNhyH =10

N J
p

of G.

Lagrange’s Theorem: Let G be a finite group, and let H C G be a subgroup of G. Then the order of H divides the order )

cosets of H.

<
Let G be a group and let H C G be a subgroup of G. The index of H in G, denoted (G : H), is the number of distinct

Let G be a finite group, and let g € G. Then the order of g divides the order of G.

Let p be a prime and let G be a group of order p. Then G is isomorphic to C,. In other words, G is a cyclic group.

Let p be a prime and let G be a group of order p?. Then G is an abelian group.

(Sylow’s Theorem): Let G be a finite group, let p be prime, and suppose that p" | #G for some n > 1. Then G has a
subgroup of order p™.

N N YN

1.5 Products of Groups

P
Let G; and G4 be groups. The product of G; and G5 is the group:

G, XGQZ{(a,b)ZGGGl,bGGQ}

Where:
(a,b) - (a’',b') = (a-a',b-b)

P
(Structure Theorem for Finite Abelian Groups): Let G be a finite abelian group. Then there are integers mj...m,
where each m; is a prime power such that:

G = (Z/miZ) % ... x (Z)my,Z)




2 Rings

A ring R is a set with two operations, called addition (a + b) and multiplication (a - b), satisfying the following axioms:

(a): Addition Properties: The set R with addition law + is an abelian group with identity Og.
(b): Multiplication Properties: The set R with multiplication law - satisfies Identity Law and Associative Law.
(c): Distributive Law: For all a,b,c € R we have:

a-(b+c)=a-b+a-c
(b+c)-a=b-a+c-a

(d): While this is not necessary for R to be a ring, if for all a,b € R, a-b = b- a, the ring is commutative.
N

( Let R be a ring. Then:

(a): For alla € R, Op - a = Op.
(b): For all a,b € R, (—a) - (—=b) =a-b.
L

( Let R and R’ be rings. A ring homomorphism from R to R’ is a function ¢ : R — R’ satisfying:
(a): ¢(1g) = 1.
(b): ¢(a+b) = é(a) + ¢(b).
(c): ¢(a-b) = ¢(a) - ¢(b).

We say that R and R’ are isomorphic if there is a bijective ring homomorphism ¢ : R — R/, called an isomorphism.
-

( The kernel of ¢ is the set of elements:

ker(¢) ={a € R: ¢(a) =O0p/}

.

2.1 Examples of Rings

The following are rings.
Z/mZ

Zji)={a+bi:a,beZ}
R[z] = {polynomials with coefficients in R.}
H={a+bi+cj+dk:ab,c,decR}

N

Let R be a ring. There is a unique homomorphism ¢ : Z — R.

2.2 Properties of Rings

[ A field is a commutative ring R where every non-zero element of R has a multiplicative inverse.

( Let R be a commutative ring. R has the cancellation property if for all a,b, c € R, the following holds:

ab=acNa#0 < b=c

e R\
Let R be a ring. An element a € R is called a zero divisor if a # 0 and there exists a non-zero element b € R such that
ab = 0. The ring R is an integral domain if it has no zero divisors.




2.3 Unit Groups and Product Rings

Let R be a commutative ring. The group of units of R is the subset R* C R defined by:

R*={a€eR:3beR,ab=1}

Elements of R* are called units.

[ The set of units R* is a group with group law being ring multiplication.

( Let m > 1 be an integer. Then:
(Z/mZ)* = {amodm : gcd(a,m) = 1}

If p is a prime, then Z/mZ is a field, denoted F,,

P
Let R;...R,, be rings. The product of R;...R,, is the ring:

Ry x..xR,= {(al, an) ta1 € Ry...a, € Rn}

P
Let R;...R,, be rings. Then:

(R1 X ... xR,)" = Ry x ... xR},

n

2.4 Ideals and Quotient Rings

P
Let R be a commutative ring. An ideal of R is a non-empty subset I C R such that:

(a): Ifa,bel,a+bel,
(b): Ifa € I and r € R, then ra € I.

<
Let R be a commutative ring, and let ¢ € R. The principal ideal generated by ¢, denoted cR or (¢), is the set of all
multiples of ¢:

cR=(c)={rc:r e R}

Let R be a commutative ring and let I C R be an ideal of R. For each element a € R, the coset of a is the set:
a+I={a+c:cel}
If a — b € I, we say that a is congruent to b modulo I, denoted:
a=b
And we define addition and multiplication of cosets as follows:
(a+ D)+ b+ =(a+bd)+1
(a+I)-(b+1I)=(a-b)+1

And we denote the collection of distinct cosets by R/I, called a quotient ring.

Let R be a commutative ring, and let I C R be an ideal of R. Then:

(a): Let a+ I and a' + I be two cosets. Then o’ + 1 =a+ I if and only if ' —a € I.
(b): Addition and multiplication of cosets is well defined.
(c): Addition and multiplcation of cosets turns R/ into a commutative ring, called a quotient ring.




Let R be a commutative ring.

(a): Let I C R be an ideal of R. Then the following map is a ring homomorphism whose kernel is I:

Y:R—R/I,a—a+R

(b): Let ¢ : R — R’ be a ring homomorphism. Then:

(i): The kernel of ¢ is an ideal of R.

(ii): ¢ is injective if and only if ker(¢) = {0}

(iii): There is a well-defined injective ring homomorphism:

¢:R/1, — R ,d(a+ 1) = ¢(a)

<
Let R be a ring, and let ¢ : Z — R be the unique homomorphism deterined by the condition that ¢(1) = 1g. Then, there
is a unique integer m > 0, called the characteristic of R, such that:

ker(¢) = mZ

Let p be prime, and let R be a commutative ring of characteristic p. Then the following map is a ring homomorphism,
called the Frobenius homomorphism of R:

f:R—R, f(a)=0d"

We notice also that for all a,b € R and all n > 0, we have:

(a+b)P" =a?" 07"

2.5 Prime Ideals and Maximal Ideals

( Let R be a commutative ring. An ideal I C R is a prime ideal if [ # R and, if whenever ab € I, either a € [ or b € I. Or, )
in other words, for two a,b ¢ I, ab ¢ I.

( Let R be a commutative ring. An ideal I is called a maximal ideal if / # R and if there is no ideal properly contained )
L between I and R. In other words, if J is an ideal and I C J C R, either J =1 or J = R.

-
Let R be a commutative ring, and let I be an ideal with I # R. Then:

(a): I is a prime ideal if and only if the quotient ring R/ is an integral domain.
(b): I is a maximal ideal if and only if the quotient ring R/I is a field.

Corollary: Every maximal ideal is a prime ideal.




3 Vector Spaces

e 2
A field is a commutative ring F' with the property that for every non-zero a € F, where is an element b € F' such that
ab = 1.

- J

e 2
Let F be a field. A vector space with field of scalars F', or, an F-vector space, is an abelian group V with a rule

for multiplying a vector v € V' by a scalar ¢ € F to obtain a new vector cv € V. Vector addition and scalar multiplication
satisfy the following axioms:

Identity Law: For all v € V:

Distributive Law #1: For all vy,v, € V, c € F:

c(vy + v2) = cvy + cvg
Distributive Law #2: For all v € V, ¢1,¢c0 € F'.

(c1 + c2)v = c1v + cov

Associative Law: For all v € V, ¢1,co € F:
(c1c2)v = c1(cov)

Let V be an F-vector space. Then:

(a): For all v € V, Ov = 0.
(b): ForallveV, (-1)v+v=0.

Let F be a field, and let V' and W be F-vector spaces. A linear transformation from V to W is a function:

L:V W

Satisfying for all v1,v9 € V, ¢1,¢9 € F:

L(Cﬂh + 021}2) = C1L(U1) + CQL(’UQ)

3.1 Bases and Dimension

e N
Let V be an F-vector space. A finite basis for V is a finite set of vectors B = {v1,...v,} C V such that every vector v € V

can be uniquely written as a linear combination of elements in B.

Let V be an F-vector space, and let A = {vy,...v,} be a set of vectors in V. Then:

(a): The set A spans V is every vector in V' is a linear combination of the vectors in A. The set of linear combinations of
vectors in A is called the span of A, denoted Span(A).

(b): The set A is linearly independent if the only solution to the following is the trivial solution:

aivg + ... + apv, =0

<
Let v be an F-vector space, and let A = {v1,...v,} be a set of vectors in V. Then A is a basis for V' if and only if .4 spans
V and is linearly independent.

<
Let V be an F-vector space, let A be a finite set of vectors in V' that spans V, and let £ C S be a subset of S that is
linearly independent. Then there is a basis for V satisfying:

LCBCS




[ Let V' be a vector space with a finite basis. Then every basis for V' has the same number of elements.

Let V be a vector space with a finite basis. The dimension of V' is the number of vectors in a basis of V', denoted dimp (V).
| We know that this is well defined.

s N
Let V be an F-vector space, let S be a finite set of vectors in V' that span V', and let £ be a set of vectors that is linearly
independent. Then, given any vectors v € L — S, we can find a vector w € S — L so that the following is still a spanning set:

(5 —{w}) U {v}

P
Let V' be an F-vector space, let S C V be a finite set that spans V', and let £ C V be a linearly independent set. Then:

#L < H#S




4 Fields

[ A field is a commutative ring F’ with the property that for every non-zero a € F' there is an element b € F such that ab = 1. ]

Let R be a commutative ring. The unit group of R is the group: )
R*={a€eR:3beR,ab=1}
We can use this define a field as:
F*={a€eF:a#0}=F—{0}

N J

( Let F and K be fields, and let ¢ : F' — K be a ring homomorphism. Then: )
(a): ¢ is injective.

(b): Let a € F*. Then ¢(a~!) = ¢(a)~L.

N J
A skew field, also called a division ring, is a ring where all non-zero elements have multiplicative inverses, but the ring )
is not necessarily commutative.

A famous result of Wedderburn says that all finite skew fields are fields.

N J

4.1 Subfields and Extension Fields

e 2
Let K be a field. A subfield of K is a subset F' C K that it itself a field using the addition and multiplication operations
from K.

- J

P

an extension field of F'.

<
Let F be a field. An extension field of F' is a field K such that F' is a subfield of K. We write K/F to indicate that K is

N J
e 2
Let L/F be an extension of fields, and let a,...c, € L. Then there is a unique field K such that:
(a): FC K CL.
(b): aq,...a, € K.
(c): If K’ is a field satisfying F C K' C L, K C K.

N J
e 2
Let K/F be an extension of fields. The degree of K over F, denoted [K : F], is the dimension of K when viewed as an

F-vector space. If [K : F] is finite, then K/F is a finite extension - otherwise, K/F is an infinite extension.
N J
e N

Let L/K/F be extensions of fields. Then:

[L:F)=[L:K]K:F]

Aslong as all of [L : F|,[L : K|, [K : F] are finite, or if [L : F] is infinite, then either [L : K] or [K : F] is infinite.
L )
4.2 Polynomial Rings
e B\

Let F be a field, and let f(x) € F[z] be a non-zero polynomial, written as:

flz)=ag+arx+ ...+ agz®
The degree of f is:
deg(f) = d

Moreover, if ag = 1, then f is a monic polynomial.

N J




p
Let fi(x), fa(x) € F[z] be non-zero polynomials. Then:

deg(f1f2) = deg(f1) + deg(f2)

p
Let F be a field, and let f(z), g(x) € F[z] be polynomials with g(z) # 0. Then there are unique polynomials ¢(r), r7(z) € F[z]
with deg(r) < deg(g) satisfying:

f(x) = g(z)q(x) + r(z)

Let F be a field and let I C F[z] be an ideal in the ring F[z]. Then I is a principal ideal.

)

4.3 Building Extension Fields

p
Let F be a field. A non-constant polynomial f(z) € F[z] is reducible (over F) if there exists non-constant polynomials

g(x),h(z) € F[z] such that f(z) = g(z)h(z). An irreducible polynomial is a non-constant polynomial that has no such
non-trivial factorizations in F[x].

Let F be a field, and let f(z) € F[x] be a non-zero polynomial. The following are equivalent:

(a): The polynomial f(x) is irreducible.
(b): The principal ideal f(z)F[z] generated by f(z) is a maximal ideal.
(c): The quotient ring F[z]/f(x)F[x] is a field.

N
Let F be a field, let f(x) € F[z] be an irreducible polynomial, let Iy = f(z)F|[z] be the principal ideal generated by f(z)
and let Ky = F[z]/I; be the indicated quotient ring.

a): The ring K is a field.

(a) g Ky

b): The field K is a finite extension of the field of F. Its degree is given by:
f

[Ky : F| = deg(f)

(c): The polynomial f(z) has a root in K.

4.4 Finite Fields

NOTE: We are missing some stuff with regards to counting polynomials, since it is painful. Refer to the textbook for this!

( Let F be a finite field. Then,

(a): The characteristic of F is prime.
(b): Let p = char(F). Then the finite field F, is a subfield of F, in the sense that there exists a unique injective
homomorphism from I, to F.
(c): The number of elements of F' is given by:
#F — p[F:]Fp]

.

{ Let p be prime, and let d > 1. Then the ring F,[x] contains an irreducible polynomial of degree d.

Let p be a prime and let d > 1. Then,

(a): There exists a field F' containing exactly p? elements.
(b): Any two fields containing p? elements are isomorphic.

10



5 Groups Continued

5.1 Normal Subgroups and Quotient Groups

p
Let G be a group and let H be a subgroup of G. We denote the set of (left) cosets of G by:

G/H = {(left) cosets of H}

Let G be a group, let H C G be a subgroup of G, and let C; and Cs be cosets of H. We define the product of C; and Cs )
by the rule:
C1-Co=q1g2H

For some ¢g; € C; and some go € Co. Note that this is only well defined if H is a normal subgroup.

Let G be a group, let H C G be a subgroup of G, and let g € G. The g-conjugate of H is the subgroup:

g 'Hg={g 'hg: g€ G}

Let G be a group, let H C G be a subgroup of G, and let g € G. H is a normal subgroup of G is, for all g € G,

g 'Hg=H

If G is abelian, than all subgroups are normal. All groups G trivially have two normal subgroups, {e} and G. If these are
the only two subgroups, then G is called a simple group.

[ Let ¢ : G — G’ be a group homomorphism. Then ker(¢) is a normal subgroup of G.

Let G be a group and let H C G be a subgroup. Then:

(a): If g7'Hg C H for all g € G, then H is a normal subgroup of G.

(b): For all g € G, g~'Hg is a subgroup of G.

(c): For all g € G, the map H — g~ *Hg defined by h — g~'hg is a group isomorphism.

Let G be a group, and let H C G be a normal subgroup of G. Let g1, g}, g2, g5 € G be elements such that:

G H=gH N gyH=gH

Then:

9195H = 9192 H

11



( Let G be a group, and let H C G be a normal subgroup of G. Then: )

(a): The collection of cosets G/H is a group with the well-defined group operation:

g H - goH = g1g2H
(b): The following map is a homomorphism with ker(¢) = H:
¢:G— G/H,¢(g9) = gH
(c): Let ¢ : G — G’ be a homomorphism with H C ker(¢). Then there is a unique homomorphism:
A:G/H — G' such that A\(gH) = 4(g)

(d): If we take H = ker(%)) in (c), then X is injective. In particular, the following is an isomorphism onto the image of A:

L X : G/ker(¢) = \NG) C G’ )

5.2 Groups Acting on Sets

-

<
Let G be a group, and let X be a set. An action of G on X is a rule that assigns each element g € G and each element
x € X another element g - x € X such that:

(1): Forallz € X, e-x = z.
(2): For all z,€ X and all g1, g2 € G, (g192)x = g1(g22).

Alternatively, we can define an action of G on X as a group homomorphism:

Oé:G*)SX

where « returns a permutation of the elements of X, and g -z = a(g)(x).

Given a group G acting on a set X, we get two important quantities.

The orbit of x is the set of elements in X that G sends x to:

Gz ={gz:g€ G}

The stabilizer of x is the set of elements in X that G leaves unchanged:

Gy, ={9€G:gx=2z}

Let G be a group that acts on a set X. Then:

(a): Every element of X is in some orbit.
(b): Let z € X. G is a subgroup of G.
(c): Let z € X. Then:

#Go - #Gx = #G
(d): Let x1, 22 € X. Then the orbits Gz; and Gz are either equal or disjoint.

[ We say that GG acts transitively on X if, for all x € X, Gz = X. ]

5.3 Orbit-Stabilizer Counting Theorem

12
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(Orbit-Stabilizer Counting Theorem): Let G be a finite group that acts on a finite set X. Then:

#X =3 #Ga, =3 27
p=il p=il

#Go,
N _ J
e 2
Let G be a group. The center of G, denoted Z(G), is the set of elements in G that commute with every element of G:
Z(G)={geG:99' =g'9.¥g € G}
- J
e N
For subgroups H C G, the normalizer of H is:
§ Ng(H)={geG:g " Hg=H} )
[ Let p be a prime, and let G be a finite group with p™ elements for some n > 1. Then Z(G) # {e}. J
[ Let p be a prime, and let G be a group with p? elements. Then G is abelian. ]

5.4 Sylow’s Theorem: Part 1

Sylow’s Theorem: Part 1. Let G be a finite group, let p be a prime, and let p™ be the largest power of p that divides
#G. Then G has a subgroup of order p™.

[ Let p be a prime, let n > 0, and let m > 1 with p{ m. Then (’;:;L”) is not divisible by p. }
( Let G be a finite group, let p be a prime, and let p™ be the largest power of p that divides #G. A subgroup H C G with )
#H = p" is called a p-Sylow subgrou pof G. G must have at least one Sylow subgroup.
N Y
( Sylow’s Theorem. Let G be a finite group, and let p be a prime. Then: )
(a): G has at least one p-Sylow subgroup.
(b): Let Hy and Hy be p-Sylow subgroups of G. Then H; and H, are conjugate: H; = gHog~! for some g € G.
(¢): Let H be a p-Sylow subgroup of G, and let k& be the number of distinct p-Sylow subgroups of G. Then k | #G and
k = 1modp.
N J
5.5 Two Counting Lemmas
{ Let G be a finite group and let H C G be a subgroup. Then H has exactly #G/# N (H) distinct conjugates in G. J

Let G be a finite group, let A and B be subgroups of G, and let AB = {ab:a € A,b € B}. Then:

#A-#B

5.6 Double Cosets and Sylow’s Theorem

13



P
Let Hy, Hy be subgroups of G. The double coset associated to g is the set:

ngH2 = {h1gh2 thy € Hl,hg € HQ}

We can define a double coset equivalence relation on G by saying g ¢’ if ¢’ = highs for some hy € Hy and hy € Hs.
N

( Let Hy, Hy be subgroups of G, and let g € G. Then:

#H, - #H,

ol i 2
ot = g g n

14




6 Rings Continued

6.1 Irreducible Elements and Unique Factorization Domains

-

Let R be a ring, and let a € R be a unit if it has a multiplicative inverse. The set of units of R, denoted R*, is a group
with group law multiplication.

<
Let R be a ring. A non-zero element a € R is irreducible if a is not a unit and the only way to factor a = bc is for either
b or ¢ to be a unit.

Let R be an integral domain. Then R is a unique factorization domain (UFD) if:

(a): For all a € R, we can write a = by - by - - - b, for irreducible by, bs,...b, € R.
(b): Suppose by, ba,...b, € R and ¢, ca,...cpn € R are all irreducible, and that their products are equal. Then n = m and
each ¢; = u;b;, after relabelling.

Let F be a field. Then the ring F[z1,...,2,] is a UFD.

6.2 FEuclidean Domains and Principal Ideal Domains

[

A ring R is a principal ideal domain (PID) if it is an integral domain in which every ideal of R is principal.

A ring R is a Euclidean domain if it is an integral and there is a size function:
o:R—{0,1,2,...}

Such that:

(a): 0(a) =0 < a=0.
(b): For all a,b € R with b # 0, there exist ¢,r € R such that:

a=0bq+ro(r) <o)

(3): For all a,b € R we have o(ab) = o(a)o(b).

Every Euclidean domain is a PID.

The ring of Gaussian integers Z[i] is a Euclidean domain with size function:

o(a+bi) = a® + b

Let R be a PID and let ¢ € R. The following are equivalent:

(a): cis irreducible.
(b): The principal ideal ¢R is maximal.
(c): The quotient ring R/cR is a field.

Let R be an integral domain, and let a,b € R. We say that b divides a is we can write a = bc for some ¢ € R, and we
denote this b | a. We note that this is equivalent to the assertion a € bR, as well as aR C bR.
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Let R be a PID and let a,b,c € R. Suppose « is irreducible and a | be. Then either a | b or a | ¢ or both.

Let R be a PID and let a,b;,...b, € R. Suppose that a is irreducible and divides the product of b;’s. Then a divides at
least one b;.

Let R be a Euclidean domian with size function o, and let w € R. Then v € R* if and only if o(u) = 1.

Let R be a PID. Then R is a UFD.

The rings Z, Z[i], and Fxz] for a field F and UFDs.

N N YN N

-

6.3 Field of Fractions

Note: this part isn’t easily summarizable. I recommend looking at the book.

Let R be an integral domain. There exists a field F, called the field of fractions of R, with the following properties:

(a): R is a subring of F.
(b): If R is a subring of some other field K, then there is a unique injective homomorphism F — K that takes R to itself
by the identity map.
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7 Fields Continued

7.1 Algebriac Numbers and Transcendental Numbers

Let L/F be an extension of fields, and let a € L. We say « is algebraic over F is « is the root of a non-zero polynomial
in F[z]. Otherwise, « is transcendental over F.

Let L/F be an extension of fields, and let o € L. F[a] is the subring of L given by:

Fla] = {ap + a1a + aza® + -- -+ a,a™ :n>0,qaq...a, € F} (1)

We can also define F[a] as the image of the evaluation map:

Eo: Fla] = F, Eo(f(2)) = f(a) (2)

F(«) is the smallest subfield of L containing both F' and «.
F[a] is the smallest subring of L containing both F' and «.

Let L/F be an extension of fields, and let o € L. Then:

Fla] = F(a) <= ais algebraic overF' (3)

Let F be a field, and let f(z) € F[x] be a non-zero polynomial. Then:

(a): dimpFla]/f(x)Flx] = deg(f)
(b): Let a be a root of f(z) in some extension field of F. Then [F(«a) : F| < deg(f).
(c): Let f(z) be irreducible in F[z] and f(«) = 0. Then:

F(a) = Flz]/ f(2)F[z] and [F(a) : F] = deg(f)

[ If @ and B are algebraic over F', then o + 3 and «f are as well. ]

7.2 Polynomial Roots and Multiplicative Subgroups

(a): Let a be a root of f(x). Then there is a polynomial g(z) € R[z] such that f(z) = (z — a)g(z).

(b): Let R be an integral domain, and let a; ...a, € R be distinct roots of f(x). Then there is a polynomial g(z) € R[z]
such that f(z) = (a—a1) - (z — a,)g(x).

(c): Let R be an integral domain. A non-zero polynomial f(z) € R[z]| of degree d has at most d distinct roots in R.

[ Let F be a field, and let U C F'* be a finite subgroup of the multiplicative group of F'. Then U is a cyclic group.

Let A be an abelian group, and let a8 € A, and suppose that o(a) = m and o(8) = n.

(a): If ged(m, n) is 1, then «f has order mn.

Let R be a commutative ring, and let f(z) € R[z] be a non-zero polynomial. J
(b): If m is the largest order in elemnets of A. Then n | m. J

7.3 Splitting Fields, Separability, and Irreducibility
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Let F be a field, L/F an extension field, and let f(z) € F[z] be a non-zero polynomial. We say that f splits completely
in L if f(x) factors as:

fl@)=clz—a1)(z —ag) - (c— aq)

For some a1 ...aq € L.

We say that L is a splitting field for f(x) over F' if f splits completely in L but does not split completely in any proper
subfield of L.

<
Let F be a field and let f € F[z] be a non-zero polynomial. Then: (a): There exists an extension field L/F that is a
splitting field for f(x) over F,

(b): If L/F is a splitting field for f(x) over F', then the degree of L/F is bounded by:

[L: F] < deg(f)!

Let F be a field, let f(z) € F[z] be a polynomial, and write f(z) as:

f(x) = ap+ a1z + - - - + agz?

Then, the formal derivative of f(x) is:

f'(x) = a1 + 2012 + - - - + dagzd!

Let F be a field, let f(z), g(z) € F[z] be polynomials, and let a,b € F' be constants. Then: (a) Sum Rule: (af + bg)'(z) = A
af'(x) + by’ (x).

(b) Product Rule: (fg)'(x) = f(@)g/ () = J'(@)g(z).

(c) Chain Rule: (f o g)/(z) = f'(g(x))’ (@),

(d) If F has characteristic 0, then f/(z) = 0 if and only if f(z) € F (f is a constant polynomial).
(e): If F has characteristic p > 0, then f’(z) = 0 if and only if there is a polynomial f;(z) € Fz] such that f(z) = fi(zP). )

Let F be a field and let f(x) € F[z] be a non-zero polynomial. f is separable if its roots are distinct. If f has one or more
repeated roots, it is inseparable.

Let F be a field, and let f(x) € F[z] be a non-constant polynomial. Then:

[ is separable <= gcd(f(x), f'(x)) =1

Let F be a field. Then: (a): All irreducible f(z) € F[z] with a non-zero derivative are separable.
(b): If F has characteristic 0, then every irreducible polynomial in F'[z] is separable.

7.4 Finite Fields Revisited

Let p be a prime and let d > 1. Then: (a): There exists a field F' containing exactly p? elements.
(b): Any two fields containing p? elements are isomorphic.
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