## 1 Groups

### 1.1 Definitions and Properties

A permutation of a set $X$ is a bijective function whose domain and range are $X$. In other words, it is a bijective function:

$$
\pi: X \rightarrow X
$$

A group consists of a set $G$ and a composition law:

$$
G \times G \rightarrow G \quad\left(g_{1}, g_{2}\right) \rightarrow g_{1} \cdot g_{2}
$$

Satisfying the following axioms:
Identity Axiom: There exists an element $e \in G$ such that, for all $g \in G$ :

$$
e \cdot g=g \cdot e=g
$$

Inverse Axiom: For all $g \in G$ there is an element $g^{-1} \in G$ such that:

$$
g \cdot g^{-1}=g^{-1} \cdot g=e
$$

Associative Law: For all $g_{1}, g_{2}, g_{3} \in G$, we have that:

$$
g_{1} \cdot\left(g_{2} \cdot g_{3}\right)=\left(g_{1} \cdot g_{2}\right) \cdot g_{3}
$$

Commutative Law: While this is not necessary for $G$ to be a group, if for all $g_{1}, g_{2} \in G$ we have the following, $G$ is commutative or abelian:

$$
g_{1} \cdot g_{2}=g_{2} \cdot g_{1}
$$

Let $G$ be a group. Then:
(a): $G$ has exactly one identity element.
(b): Each element of $G$ has exactly one inverse.
(c): Let $g, h \in G$. Then $(g \cdot h)^{-1}=h^{-1} \cdot g^{-1}$.
(d): Let $g \in G$. Then $\left(g^{-1}\right)^{-1}=g$.

The order of a group $G$, denoted $\# G$, is the cardinality of the set of elements of $G$.

The order of an element $g \in G$ is the smallest integer $n \geq 1$ such that $g^{n}=e$. If no $n$ exists, then $g$ has infinite order.

Let $G$ be a group, let $g \in G$. The order of $g$ divides the order of $G$.

### 1.2 Examples of Groups

The set of integers modulo $m$, denoted $\mathbb{Z} / m \mathbb{Z}$, form the group of integers modulo $m$ with addition as the group law.

The set of real numbers $\mathbb{R}$, the set of rational numbers $\mathbb{Q}$, and the set of complex numbers $\mathbb{C}$ all form groups with addition as the group law. The set of positive or non-zero real numbers also form groups with multiplcation as the group law.

A group $G$ is a cyclic group if there is an element $g \in G$ such that $G=\left\{\ldots g^{-1}, e, g, g^{2}, \ldots\right\}$. In other words, all other elements are generated by $g$, and $g$ is called the generator of $G$. We denote the cyclic groups of the integers up to $n$ as $\mathcal{C}_{n}$.

The symmetric group of $X$, denoted $S_{X}$, is the collection of all permutations of $X$, with the group law being the composition of permuations.

The group of $n \times n$ matrices, $A$, such that $\operatorname{det}(A) \neq 0$ is the general linear group, denoted $G L_{n}(X)$, where $X$ is the group where the entries live in.

The group of symmetries of a regular $n$-gon is the $n$ 'th dihedral group, denoted $\mathcal{D}_{n}$. There are exactly $n$ rotations and $n$ flips in this group.

The quaternion group $\mathcal{Q}$ is a non-commutative group with eight elements with operations you can look up:

$$
\mathcal{Q}=\{ \pm 1, \pm i, \pm j, \pm k\}
$$

### 1.3 Group Homomorphisms

Let $G$ and $G^{\prime}$ be groups. A group homomorphism from $G$ to $G^{\prime}$ is a function $\phi: G \rightarrow G^{\prime}$ such that, for all $g_{1}, g_{2} \in G$ :

$$
\phi\left(g_{1} \cdot g_{2}\right)=\phi\left(g_{1}\right) \cdot \phi\left(g_{2}\right)
$$

The above is sufficient to prove the following two properties:
(a): Let $e \in G$ be the identity element of $G$. Then $\phi(e)$ is the identity element of $G^{\prime}$.
(b): Let $g \in G$. Then $\phi\left(g^{-1}\right)=\phi(g)^{-1}$.

Let $G_{1}$ and $G_{2}$ be groups. These groups are isomorphic if there exists a bijective homomorphism $\phi: G_{1} \rightarrow G_{2}$, which we call an isomorphism. In this case, $G_{1}$ and $G_{2}$ are the same group, just relabelled.

### 1.4 Subgroups, Cosets, and Lagrange's Theorem

Let $G$ be a group. A subgroup of $G$ is a subset $H \subset G$ that is also a group under $G$ 's group law. That is, $H$ satisfies:
(a): For all $h_{1}, h_{2} \in H, h_{1} \cdot h_{2} \in H$.
(b): $e \in H$.
(c): For all $h \in H, h^{-1} \in H$.

We note that all groups have two trivial subgroups, $\{e\}$ and $G$ itself.

Let $G$ be a group, let $g \in G$ have order $n$. The cyclic subgroup of $G$ generated by $g$ is:

$$
\langle g\rangle=\left\{\ldots g^{-1}, e, g, g^{2} \ldots\right\}
$$

It is isomorphic to the cyclic group $\mathcal{C}_{n}$.

Let $\phi: G \rightarrow G^{\prime}$ be a group homomorphism. The kernel of $\phi$ is the set:

$$
\operatorname{ker}(\phi)=\left\{g \in G: \phi(g)=e^{\prime}\right\}
$$

Let $\phi: G \rightarrow G^{\prime}$ be a group homomorphism. Then:
(a): $\operatorname{ker}(\phi)$ is a subgroup of $G$.
(b): $\phi$ is injective if and only if $\operatorname{ker}(\phi)=\{e\}$.

Let $G$ be a group, and let $H \subset G$ be a subgroup of $G$. For all $g \in G$, the (left) coset of $H$ attached to $g$ is the set:

$$
g H=\{g h: h \in H\}
$$

Let $G$ be a finite group, and let $H \subset G$ be a subgroup of $G$. Then:
(a): Every element of $G$ is in some coset of $H$.
(b): Every coset of $H$ has the same number of elements.
(c): Let $g_{1}, g_{2} \in G$. Then either:

$$
g_{1} H=g_{2} H \quad \text { or } \quad g_{1} H \cap h_{2} H=\emptyset
$$

Lagrange's Theorem: Let $G$ be a finite group, and let $H \subset G$ be a subgroup of $G$. Then the order of $H$ divides the order of $G$.

Let $G$ be a group and let $H \subset G$ be a subgroup of $G$. The index of $H$ in $G$, denoted $(G: H)$, is the number of distinct cosets of $H$.

Let $G$ be a finite group, and let $g \in G$. Then the order of $g$ divides the order of $G$.

Let $p$ be a prime and let $G$ be a group of order $p$. Then $G$ is isomorphic to $\mathcal{C}_{p}$. In other words, $G$ is a cyclic group.

Let $p$ be a prime and let $G$ be a group of order $p^{2}$. Then $G$ is an abelian group.
(Sylow's Theorem): Let $G$ be a finite group, let $p$ be prime, and suppose that $p^{n} \mid \# G$ for some $n \geq 1$. Then $G$ has a subgroup of order $p^{n}$.

### 1.5 Products of Groups

Let $G_{1}$ and $G_{2}$ be groups. The product of $G_{1}$ and $G_{2}$ is the group:

$$
G_{1} \times G_{2}=\left\{(a, b): a \in G_{1}, b \in G_{2}\right\}
$$

Where:

$$
(a, b) \cdot\left(a^{\prime}, b^{\prime}\right)=\left(a \cdot a^{\prime}, b \cdot b^{\prime}\right)
$$

(Structure Theorem for Finite Abelian Groups): Let $G$ be a finite abelian group. Then there are integers $m_{1} \ldots m_{r}$ where each $m_{i}$ is a prime power such that:

$$
G \cong\left(\mathbb{Z} / m_{1} \mathbb{Z}\right) \times \ldots \times\left(\mathbb{Z} / m_{r} \mathbb{Z}\right)
$$

## 2 Rings

A ring $R$ is a set with two operations, called addition $(a+b)$ and multiplication $(a \cdot b)$, satisfying the following axioms:
(a): Addition Properties: The set $R$ with addition law + is an abelian group with identity $0_{R}$.
(b): Multiplication Properties: The set $R$ with multiplication law • satisfies Identity Law and Associative Law.
(c): Distributive Law: For all $a, b, c \in R$ we have:

$$
\begin{aligned}
& a \cdot(b+c)=a \cdot b+a \cdot c \\
& (b+c) \cdot a=b \cdot a+c \cdot a
\end{aligned}
$$

(d): While this is not necessary for $R$ to be a ring, if for all $a, b \in R, a \cdot b=b \cdot a$, the ring is commutative.

Let $R$ be a ring. Then:
(a): For all $a \in R, 0_{R} \cdot a=0_{R}$.
(b): For all $a, b \in R,(-a) \cdot(-b)=a \cdot b$.

Let $R$ and $R^{\prime}$ be rings. A ring homomorphism from $R$ to $R^{\prime}$ is a function $\phi: R \rightarrow R^{\prime}$ satisfying:
(a): $\phi\left(1_{R}\right)=1_{R^{\prime}}$.
(b): $\phi(a+b)=\phi(a)+\phi(b)$.
(c): $\phi(a \cdot b)=\phi(a) \cdot \phi(b)$.

We say that $R$ and $R^{\prime}$ are isomorphic if there is a bijective ring homomorphism $\phi: R \rightarrow R^{\prime}$, called an isomorphism.

The kernel of $\phi$ is the set of elements:

$$
\operatorname{ker}(\phi)=\left\{a \in R: \phi(a)=0_{R^{\prime}}\right\}
$$

### 2.1 Examples of Rings

The following are rings.

$$
\begin{gathered}
\mathbb{Z} / m \mathbb{Z} \\
\mathbb{Z}[i]=\{a+b i: a, b \in \mathbb{Z}\} \\
R[x]=\{\text { polynomials with coefficients in } R .\} \\
\mathbb{H}=\{a+b i+c j+d k: a, b, c, d \in \mathbb{R}\}
\end{gathered}
$$

Let $R$ be a ring. There is a unique homomorphism $\phi: \mathbb{Z} \rightarrow R$.

### 2.2 Properties of Rings

A field is a commutative ring $R$ where every non-zero element of $R$ has a multiplicative inverse.

Let $R$ be a commutative ring. $R$ has the cancellation property if for all $a, b, c \in R$, the following holds:

$$
a b=a c \wedge a \neq 0 \Longleftrightarrow b=c
$$

Let $R$ be a ring. An element $a \in R$ is called a zero divisor if $a \neq 0$ and there exists a non-zero element $b \in R$ such that $a b=0$. The ring $R$ is an integral domain if it has no zero divisors.

### 2.3 Unit Groups and Product Rings

Let $R$ be a commutative ring. The group of units of $R$ is the subset $R^{*} \subset R$ defined by:

$$
R^{*}=\{a \in R: \exists b \in R, a b=1\}
$$

Elements of $R^{*}$ are called units.

The set of units $R^{*}$ is a group with group law being ring multiplication.

Let $m \geq 1$ be an integer. Then:

$$
(\mathbb{Z} / m \mathbb{Z})^{*}=\{a \bmod m: \operatorname{gcd}(a, m)=1\}
$$

If $p$ is a prime, then $\mathbb{Z} / m \mathbb{Z}$ is a field, denoted $\mathbb{F}_{p}$

Let $R_{1} \ldots R_{n}$ be rings. The product of $R_{1} \ldots R_{n}$ is the ring:

$$
R_{1} \times \ldots \times R_{n}=\left\{\left(a_{1}, \ldots a_{n}\right): a_{1} \in R_{1} \ldots a_{n} \in R_{n}\right\}
$$

Let $R_{1} \ldots R_{n}$ be rings. Then:

$$
\left(R_{1} \times \ldots \times R_{n}\right)^{*} \cong R_{1}^{*} \times \ldots \times R_{n}^{*}
$$

### 2.4 Ideals and Quotient Rings

Let $R$ be a commutative ring. An ideal of $R$ is a non-empty subset $I \subseteq R$ such that:
(a): If $a, b \in I, a+b \in I$,
(b): If $a \in I$ and $r \in R$, then $r a \in I$.

Let $R$ be a commutative ring, and let $c \in R$. The principal ideal generated by $c$, denoted $c R$ or $(c)$, is the set of all multiples of $c$ :

$$
c R=(c)=\{r c: r \in R\}
$$

Let $R$ be a commutative ring and let $I \subseteq R$ be an ideal of $R$. For each element $a \in R$, the coset of $a$ is the set:

$$
a+I=\{a+c: c \in I\}
$$

If $a-b \in I$, we say that $a$ is congruent to $b$ modulo $I$, denoted:

$$
a \equiv b
$$

And we define addition and multiplication of cosets as follows:

$$
\begin{aligned}
(a+I)+(b+I) & =(a+b)+I \\
(a+I) \cdot(b+I) & =(a \cdot b)+I
\end{aligned}
$$

And we denote the collection of distinct cosets by $R / I$, called a quotient ring.

Let $R$ be a commutative ring, and let $I \subseteq R$ be an ideal of $R$. Then:
(a): Let $a+I$ and $a^{\prime}+I$ be two cosets. Then $a^{\prime}+I=a+I$ if and only if $a^{\prime}-a \in I$.
(b): Addition and multiplication of cosets is well defined.
(c): Addition and multiplcation of cosets turns $R / I$ into a commutative ring, called a quotient ring.

Let $R$ be a commutative ring.
(a): Let $I \subseteq R$ be an ideal of $R$. Then the following map is a ring homomorphism whose kernel is $I$ :

$$
\psi: R \rightarrow R / I, a \rightarrow a+R
$$

(b): Let $\phi: R \rightarrow R^{\prime}$ be a ring homomorphism. Then:
(i): The kernel of $\phi$ is an ideal of $R$.
(ii): $\phi$ is injective if and only if $\operatorname{ker}(\phi)=\{0\}$
(iii): There is a well-defined injective ring homomorphism:

$$
\bar{\phi}: R / I_{\phi} \rightarrow R^{\prime}, \bar{\phi}\left(a+I_{\phi}\right)=\phi(a)
$$

Let $R$ be a ring, and let $\phi: \mathbb{Z} \rightarrow R$ be the unique homomorphism deterined by the condition that $\phi(1)=1_{R}$. Then, there is a unique integer $m \geq 0$, called the characteristic of $R$, such that:

$$
\operatorname{ker}(\phi)=m \mathbb{Z}
$$

Let $p$ be prime, and let $R$ be a commutative ring of characteristic $p$. Then the following map is a ring homomorphism, called the Frobenius homomorphism of $R$ :

$$
f: R \rightarrow R, f(a)=a^{p}
$$

We notice also that for all $a, b \in R$ and all $n \geq 0$, we have:

$$
(a+b)^{p^{n}}=a^{p^{n}}+b^{p^{n}}
$$

### 2.5 Prime Ideals and Maximal Ideals

Let $R$ be a commutative ring. An ideal $I \subseteq R$ is a prime ideal if $I \neq R$ and, if whenever $a b \in I$, either $a \in I$ or $b \in I$. Or, in other words, for two $a, b \notin I, a b \notin I$.

Let $R$ be a commutative ring. An ideal $I$ is called a maximal ideal if $I \neq R$ and if there is no ideal properly contained between $I$ and $R$. In other words, if $J$ is an ideal and $I \subseteq J \subseteq R$, either $J=I$ or $J=R$.

Let $R$ be a commutative ring, and let $I$ be an ideal with $I \neq R$. Then:
(a): $I$ is a prime ideal if and only if the quotient ring $R / I$ is an integral domain.
(b): $I$ is a maximal ideal if and only if the quotient ring $R / I$ is a field.

Corollary: Every maximal ideal is a prime ideal.

## 3 Vector Spaces

A field is a commutative ring $F$ with the property that for every non-zero $a \in F$, where is an element $b \in F$ such that $a b=1$.

Let $F$ be a field. A vector space with field of scalars $F$, or, an $F$-vector space, is an abelian group $V$ with a rule for multiplying a vector $v \in V$ by a scalar $c \in F$ to obtain a new vector $c v \in V$. Vector addition and scalar multiplication satisfy the following axioms:
Identity Law: For all $v \in V$ :

$$
1 v=v
$$

Distributive Law \#1: For all $v_{1}, v_{2} \in V, c \in F$ :

$$
c\left(v_{1}+v_{2}\right)=c v_{1}+c v_{2}
$$

Distributive Law \#2: For all $v \in V, c_{1}, c_{2} \in F$ :

$$
\left(c_{1}+c_{2}\right) v=c_{1} v+c_{2} v
$$

Associative Law: For all $v \in V, c_{1}, c_{2} \in F$ :

$$
\left(c_{1} c_{2}\right) v=c_{1}\left(c_{2} v\right)
$$

Let $V$ be an $F$-vector space. Then:
(a): For all $v \in V, 0 v=0$.
(b): For all $v \in V,(-1) v+v=0$.

Let $F$ be a field, and let $V$ and $W$ be $F$-vector spaces. A linear transformation from $V$ to $W$ is a function:

$$
L: V \rightarrow W
$$

Satisfying for all $v_{1}, v_{2} \in V, c_{1}, c_{2} \in F$ :

$$
L\left(c_{1} v_{1}+c_{2} v_{2}\right)=c_{1} L\left(v_{1}\right)+c_{2} L\left(v_{2}\right)
$$

### 3.1 Bases and Dimension

Let $V$ be an $F$-vector space. A finite basis for $V$ is a finite set of vectors $\mathcal{B}=\left\{v_{1}, \ldots v_{n}\right\} \subset V$ such that every vector $v \in V$ can be uniquely written as a linear combination of elements in $\mathcal{B}$.

Let $V$ be an $F$-vector space, and let $\mathcal{A}=\left\{v_{1}, \ldots v_{n}\right\}$ be a set of vectors in $V$. Then:
(a): The set $\mathcal{A}$ spans $V$ is every vector in $V$ is a linear combination of the vectors in $\mathcal{A}$. The set of linear combinations of vectors in $\mathcal{A}$ is called the span of $\mathcal{A}$, denoted $\operatorname{Span}(\mathcal{A})$.
(b): The set $\mathcal{A}$ is linearly independent if the only solution to the following is the trivial solution:

$$
a_{1} v_{2}+\ldots+a_{n} v_{n}=\overrightarrow{0}
$$

Let $v$ be an $F$-vector space, and let $\mathcal{A}=\left\{v_{1}, \ldots v_{n}\right\}$ be a set of vectors in $V$. Then $\mathcal{A}$ is a basis for $V$ if and only if $\mathcal{A}$ spans $V$ and is linearly independent.

Let $V$ be an $F$-vector space, let $\mathcal{A}$ be a finite set of vectors in $V$ that spans $V$, and let $\mathcal{L} \subseteq \mathcal{S}$ be a subset of $\mathcal{S}$ that is linearly independent. Then there is a basis for $V$ satisfying:

$$
\mathcal{L} \subseteq \mathcal{B} \subseteq \mathcal{S}
$$

Let $V$ be a vector space with a finite basis. Then every basis for $V$ has the same number of elements.

Let $V$ be a vector space with a finite basis. The dimension of $V$ is the number of vectors in a basis of $V$, denoted $\operatorname{dim}_{F}(V)$. We know that this is well defined.

Let $V$ be an $F$-vector space, let $\mathcal{S}$ be a finite set of vectors in $V$ that span $V$, and let $\mathcal{L}$ be a set of vectors that is linearly independent. Then, given any vectors $v \in \mathcal{L}-\mathcal{S}$, we can find a vector $w \in \mathcal{S}-\mathcal{L}$ so that the following is still a spanning set:

$$
(S-\{w\}) \cup\{v\}
$$

Let $V$ be an $F$-vector space, let $\mathcal{S} \subset V$ be a finite set that spans $V$, and let $\mathcal{L} \subset V$ be a linearly independent set. Then:

$$
\# \mathcal{L} \leq \# \mathcal{S}
$$

## 4 Fields

A field is a commutative ring $F$ with the property that for every non-zero $a \in F$ there is an element $b \in F$ such that $a b=1$.

Let $R$ be a commutative ring. The unit group of $R$ is the group:

$$
R^{*}=\{a \in R: \exists b \in R, a b=1\}
$$

We can use this define a field as:

$$
F^{*}=\{a \in F: a \neq 0\}=F-\{0\}
$$

Let $F$ and $K$ be fields, and let $\phi: F \rightarrow K$ be a ring homomorphism. Then:
(a): $\phi$ is injective.
(b): Let $a \in F^{*}$. Then $\phi\left(a^{-1}\right)=\phi(a)^{-1}$.

A skew field, also called a division ring, is a ring where all non-zero elements have multiplicative inverses, but the ring is not necessarily commutative.
A famous result of Wedderburn says that all finite skew fields are fields.

### 4.1 Subfields and Extension Fields

Let $K$ be a field. A subfield of $K$ is a subset $F \subset K$ that it itself a field using the addition and multiplication operations from $K$.

Let $F$ be a field. An extension field of $F$ is a field $K$ such that $F$ is a subfield of $K$. We write $K / F$ to indicate that $K$ is an extension field of $F$.

Let $L / F$ be an extension of fields, and let $\alpha_{1}, \ldots \alpha_{n} \in L$. Then there is a unique field $K$ such that:
(a): $F \subset K \subseteq L$.
(b): $\alpha_{1}, \ldots \alpha_{n} \in K$.
(c): If $K^{\prime}$ is a field satisfying $F \subseteq K^{\prime} \subseteq L, K \subseteq K^{\prime}$.

Let $K / F$ be an extension of fields. The degree of $K$ over $F$, denoted $[K: F]$, is the dimension of $K$ when viewed as an $F$-vector space. If $[K: F]$ is finite, then $K / F$ is a finite extension - otherwise, $K / F$ is an infinite extension.

Let $L / K / F$ be extensions of fields. Then:

$$
[L: F]=[L: K][K: F]
$$

As long as all of $[L: F],[L: K],[K: F]$ are finite, or if $[L: F]$ is infinite, then either $[L: K]$ or $[K: F]$ is infinite.

### 4.2 Polynomial Rings

Let $F$ be a field, and let $f(x) \in F[x]$ be a non-zero polynomial, written as:

$$
f(x)=a_{0}+a_{1} x+\ldots+a_{d} x^{d}
$$

The degree of $f$ is:

$$
\operatorname{deg}(f)=d
$$

Moreover, if $a_{d}=1$, then $f$ is a monic polynomial.

Let $f_{1}(x), f_{2}(x) \in F[x]$ be non-zero polynomials. Then:

$$
\operatorname{deg}\left(f_{1} f_{2}\right)=\operatorname{deg}\left(f_{1}\right)+\operatorname{deg}\left(f_{2}\right)
$$

Let $F$ be a field, and let $f(x), g(x) \in F[x]$ be polynomials with $g(x) \neq 0$. Then there are unique polynomials $q(r), r(x) \in F[x]$ with $\operatorname{deg}(r)<\operatorname{deg}(g)$ satisfying:

$$
f(x)=g(x) q(x)+r(x)
$$

Let $F$ be a field and let $I \subseteq F[x]$ be an ideal in the ring $F[x]$. Then $I$ is a principal ideal.

### 4.3 Building Extension Fields

Let $F$ be a field. A non-constant polynomial $f(x) \in F[x]$ is reducible (over $F$ ) if there exists non-constant polynomials $g(x), h(x) \in F[x]$ such that $f(x)=g(x) h(x)$. An irreducible polynomial is a non-constant polynomial that has no such non-trivial factorizations in $F[x]$.

Let $F$ be a field, and let $f(x) \in F[x]$ be a non-zero polynomial. The following are equivalent:
(a): The polynomial $f(x)$ is irreducible.
(b): The principal ideal $f(x) F[x]$ generated by $f(x)$ is a maximal ideal.
(c): The quotient ring $F[x] / f(x) F[x]$ is a field.

Let $F$ be a field, let $f(x) \in F[x]$ be an irreducible polynomial, let $I_{f}=f(x) F[x]$ be the principal ideal generated by $f(x)$ and let $K_{f}=F[x] / I_{f}$ be the indicated quotient ring.
(a): The ring $K_{f}$ is a field.
(b): The field $K_{f}$ is a finite extension of the field of $F$. Its degree is given by:

$$
\left[K_{f}: F\right]=\operatorname{deg}(f)
$$

(c): The polynomial $f(x)$ has a root in $K_{f}$.

### 4.4 Finite Fields

NOTE: We are missing some stuff with regards to counting polynomials, since it is painful. Refer to the textbook for this!
Let $F$ be a finite field. Then,
(a): The characteristic of $F$ is prime.
(b): Let $p=\operatorname{char}(F)$. Then the finite field $\mathbb{F}_{p}$ is a subfield of $F$, in the sense that there exists a unique injective homomorphism from $\mathbb{F}_{p}$ to $F$.
(c): The number of elements of $F$ is given by:

$$
\# F=p^{\left[F: \mathbb{F}_{p}\right]}
$$

Let $p$ be prime, and let $d \geq 1$. Then the ring $\mathbb{F}_{p}[x]$ contains an irreducible polynomial of degree $d$.

Let $p$ be a prime and let $d \geq 1$. Then,
(a): There exists a field $F$ containing exactly $p^{d}$ elements.
(b): Any two fields containing $p^{d}$ elements are isomorphic.

## 5 Groups Continued

### 5.1 Normal Subgroups and Quotient Groups

Let $G$ be a group and let $H$ be a subgroup of $G$. We denote the set of (left) cosets of $G$ by:

$$
G / H=\{(\mathrm{left}) \text { cosets of } H\}
$$

Let $G$ be a group, let $H \subseteq G$ be a subgroup of $G$, and let $\mathcal{C}_{1}$ and $\mathcal{C}_{2}$ be cosets of $H$. We define the product of $\mathcal{C}_{1}$ and $\mathcal{C}_{2}$ by the rule:

$$
\mathcal{C}_{1} \cdot \mathcal{C}_{2}=g_{1} g_{2} H
$$

For some $g_{1} \in \mathcal{C}_{1}$ and some $g_{2} \in \mathcal{C}_{2}$. Note that this is only well defined if $H$ is a normal subgroup.

Let $G$ be a group, let $H \subseteq G$ be a subgroup of $G$, and let $g \in G$. The $g$-conjugate of $H$ is the subgroup:

$$
g^{-1} H g=\left\{g^{-1} h g: g \in G\right\}
$$

Let $G$ be a group, let $H \subseteq G$ be a subgroup of $G$, and let $g \in G$. $H$ is a normal subgroup of $G$ is, for all $g \in G$,

$$
g^{-1} H g=H
$$

If $G$ is abelian, than all subgroups are normal. All groups $G$ trivially have two normal subgroups, $\{e\}$ and $G$. If these are the only two subgroups, then $G$ is called a simple group.

Let $\phi: G \rightarrow G^{\prime}$ be a group homomorphism. Then $\operatorname{ker}(\phi)$ is a normal subgroup of $G$.

Let $G$ be a group and let $H \subset G$ be a subgroup. Then:
(a): If $g^{-1} H g \subseteq H$ for all $g \in G$, then $H$ is a normal subgroup of $G$.
(b): For all $g \in G, g^{-1} H g$ is a subgroup of $G$.
(c): For all $g \in G$, the map $H \rightarrow g^{-1} H g$ defined by $h \rightarrow g^{-1} h g$ is a group isomorphism.

Let $G$ be a group, and let $H \subset G$ be a normal subgroup of $G$. Let $g_{1}, g_{1}^{\prime}, g_{2}, g_{2}^{\prime} \in G$ be elements such that:

$$
g_{1}^{\prime} H=g_{1} H \quad \wedge \quad g_{2}^{\prime} H=g_{2} H
$$

Then:

$$
g_{1}^{\prime} g_{2}^{\prime} H=g_{1} g_{2} H
$$

Let $G$ be a group, and let $H \subset G$ be a normal subgroup of $G$. Then:
(a): The collection of cosets $G / H$ is a group with the well-defined group operation:

$$
g_{1} H \cdot g_{2} H=g_{1} g_{2} H
$$

(b): The following map is a homomorphism with $\operatorname{ker}(\phi)=H$ :

$$
\phi: G \rightarrow G / H, \phi(g)=g H
$$

(c): Let $\psi: G \rightarrow G^{\prime}$ be a homomorphism with $H \subseteq \operatorname{ker}(\phi)$. Then there is a unique homomorphism:

$$
\lambda: G / H \rightarrow G^{\prime} \quad \text { such that } \quad \lambda(g H)=\psi(g)
$$

(d): If we take $H=\operatorname{ker}(\psi)$ in (c), then $\lambda$ is injective. In particular, the following is an isomorphism onto the image of $\lambda$ :

$$
\lambda: G / \operatorname{ker}(\phi) \rightarrow \lambda(G) \subseteq G^{\prime}
$$

### 5.2 Groups Acting on Sets

Let $G$ be a group, and let $X$ be a set. An action of $G$ on $X$ is a rule that assigns each element $g \in G$ and each element $x \in X$ another element $g \cdot x \in X$ such that:
(1): For all $x \in X, e \cdot x=x$.
(2): For all $x, \in X$ and all $g_{1}, g_{2} \in G,\left(g_{1} g_{2}\right) x=g_{1}\left(g_{2} x\right)$.

Alternatively, we can define an action of $G$ on $X$ as a group homomorphism:

$$
\alpha: G \rightarrow \mathcal{S}_{X}
$$

where $\alpha$ returns a permutation of the elements of $X$, and $g \cdot x=\alpha(g)(x)$.

Given a group $G$ acting on a set $X$, we get two important quantities.
The orbit of $x$ is the set of elements in $X$ that $G$ sends $x$ to:

$$
G x=\{g x: g \in G\}
$$

The stabilizer of $x$ is the set of elements in $X$ that $G$ leaves unchanged:

$$
G_{x}=\{g \in G: g x=x\}
$$

Let $G$ be a group that acts on a set $X$. Then:
(a): Every element of $X$ is in some orbit.
(b): Let $x \in X . G_{x}$ is a subgroup of $G$.
(c): Let $x \in X$. Then:

$$
\# G_{x} \cdot \# G x=\# G
$$

(d): Let $x_{1}, x_{2} \in X$. Then the orbits $G x_{1}$ and $G x_{2}$ are either equal or disjoint.

We say that $G$ acts transitively on $X$ if, for all $x \in X, G x=X$.

### 5.3 Orbit-Stabilizer Counting Theorem

(Orbit-Stabilizer Counting Theorem): Let $G$ be a finite group that acts on a finite set $X$. Then:

$$
\# X=\sum_{i=1}^{n} \# G x_{i}=\sum_{i=1}^{n} \frac{\# G}{\# G_{x_{i}}}
$$

Let $G$ be a group. The center of $G$, denoted $Z(G)$, is the set of elements in $G$ that commute with every element of $G$ :

$$
Z(G)=\left\{g \in G: g g^{\prime}=g^{\prime} g, \forall g^{\prime} \in G\right\}
$$

For subgroups $H \subseteq G$, the normalizer of $H$ is:

$$
N_{G}(H)=\left\{g \in G: g^{-1} H g=H\right\}
$$

Let $p$ be a prime, and let $G$ be a finite group with $p^{n}$ elements for some $n \geq 1$. Then $Z(G) \neq\{e\}$.

Let $p$ be a prime, and let $G$ be a group with $p^{2}$ elements. Then $G$ is abelian.

### 5.4 Sylow's Theorem: Part 1

Sylow's Theorem: Part 1. Let $G$ be a finite group, let $p$ be a prime, and let $p^{n}$ be the largest power of $p$ that divides $\# G$. Then $G$ has a subgroup of order $p^{n}$.

Let $p$ be a prime, let $n \geq 0$, and let $m \geq 1$ with $p \nmid m$. Then $\binom{p^{n} m}{m^{n}}$ is not divisible by $p$.

Let $G$ be a finite group, let $p$ be a prime, and let $p^{n}$ be the largest power of $p$ that divides $\# G$. A subgroup $H \subseteq G$ with $\# H=p^{n}$ is called a $p$-Sylow subgrou pof $G$. $G$ must have at least one Sylow subgroup.

Sylow's Theorem. Let $G$ be a finite group, and let $p$ be a prime. Then:
(a): $G$ has at least one $p$-Sylow subgroup.
(b): Let $H_{1}$ and $H_{2}$ be $p$-Sylow subgroups of $G$. Then $H_{1}$ and $H_{2}$ are conjugate: $H_{1}=g H_{2} g^{-1}$ for some $g \in G$.
(c): Let $H$ be a $p$-Sylow subgroup of $G$, and let $k$ be the number of distinct $p$-Sylow subgroups of $G$. Then $k \mid \# G$ and $k \equiv 1 \bmod p$.

### 5.5 Two Counting Lemmas

Let $G$ be a finite group and let $H \subseteq G$ be a subgroup. Then $H$ has exactly $\# G / \# N(H)$ distinct conjugates in $G$.

Let $G$ be a finite group, let $A$ and $B$ be subgroups of $G$, and let $A B=\{a b: a \in A, b \in B\}$. Then:

$$
\#(A B)=\frac{\# A \cdot \# B}{\#(A \cap B)}
$$

### 5.6 Double Cosets and Sylow's Theorem

Let $H_{1}, H_{2}$ be subgroups of $G$. The double coset associated to $g$ is the set:

$$
H_{1} g H_{2}=\left\{h_{1} g h_{2}: h_{1} \in H_{1}, h_{2} \in H_{2}\right\}
$$

We can define a double coset equivalence relation on $G$ by saying $g g^{\prime}$ if $g^{\prime}=h_{1} g h_{2}$ for some $h_{1} \in H_{1}$ and $h_{2} \in H_{2}$.

Let $H_{1}, H_{2}$ be subgroups of $G$, and let $g \in G$. Then:

$$
\# H_{1} g H_{2}=\frac{\# H_{1} \cdot \# H_{2}}{\#\left(g^{-1} G_{1} g \cap H_{2}\right.}
$$

## 6 Rings Continued

### 6.1 Irreducible Elements and Unique Factorization Domains

Let $R$ be a ring, and let $a \in R$ be a unit if it has a multiplicative inverse. The set of units of $R$, denoted $R^{*}$, is a group with group law multiplication.

Let $R$ be a ring. A non-zero element $a \in R$ is irreducible if $a$ is not a unit and the only way to factor $a=b c$ is for either $b$ or $c$ to be a unit.

Let $R$ be an integral domain. Then $R$ is a unique factorization domain (UFD) if:
(a): For all $a \in R$, we can write $a=b_{1} \cdot b_{2} \cdots b_{n}$ for irreducible $b_{1}, b_{2}, \ldots b_{n} \in R$.
(b): Suppose $b_{1}, b_{2}, \ldots b_{n} \in R$ and $c_{1}, c_{2}, \ldots c_{m} \in R$ are all irreducible, and that their products are equal. Then $n=m$ and each $c_{i}=u_{i} b_{i}$, after relabelling.

Let $F$ be a field. Then the ring $F\left[x_{1}, \ldots, x_{n}\right]$ is a UFD.

### 6.2 Euclidean Domains and Principal Ideal Domains

A ring $R$ is a principal ideal domain (PID) if it is an integral domain in which every ideal of $R$ is principal.

A ring $R$ is a Euclidean domain if it is an integral and there is a size function:

$$
\sigma: R \rightarrow\{0,1,2, \ldots\}
$$

Such that:
(a): $\sigma(a)=0 \Longleftrightarrow a=0$.
(b): For all $a, b \in R$ with $b \neq 0$, there exist $q, r \in R$ such that:

$$
a=b q+r, \sigma(r)<\sigma(b)
$$

(3): For all $a, b \in R$ we have $\sigma(a b)=\sigma(a) \sigma(b)$.

Every Euclidean domain is a PID.

The ring of Gaussian integers $\mathbb{Z}[i]$ is a Euclidean domain with size function:

$$
\sigma(a+b i)=a^{2}+b^{2}
$$

Let $R$ be a PID and let $c \in R$. The following are equivalent:
(a): $c$ is irreducible.
(b): The principal ideal $c R$ is maximal.
(c): The quotient ring $R / c R$ is a field.

Let $R$ be an integral domain, and let $a, b \in R$. We say that $b$ divides $a$ is we can write $a=b c$ for some $c \in R$, and we denote this $b \mid a$. We note that this is equivalent to the assertion $a \in b R$, as well as $a R \subseteq b R$.

Let $R$ be a PID and let $a, b, c \in R$. Suppose $a$ is irreducible and $a \mid b c$. Then either $a \mid b$ or $a \mid c$ or both.

Let $R$ be a PID and let $a, b_{1}, \ldots b_{n} \in R$. Suppose that $a$ is irreducible and divides the product of $b_{i}$ 's. Then $a$ divides at least one $b_{i}$.

Let $R$ be a Euclidean domian with size function $\sigma$, and let $u \in R$. Then $u \in R^{*}$ if and only if $\sigma(u)=1$.

Let $R$ be a PID. Then $R$ is a UFD.

The rings $\mathbb{Z}, \mathbb{Z}[i]$, and $F[x]$ for a field $F$ and UFDs.

### 6.3 Field of Fractions

Note: this part isn't easily summarizable. I recommend looking at the book.
Let $R$ be an integral domain. There exists a field $F$, called the field of fractions of $R$, with the following properties:
(a): $R$ is a subring of $F$.
(b): If $R$ is a subring of some other field $K$, then there is a unique injective homomorphism $F \rightarrow K$ that takes $R$ to itself by the identity map.

## 7 Fields Continued

### 7.1 Algebriac Numbers and Transcendental Numbers

Let $L / F$ be an extension of fields, and let $\alpha \in L$. We say $\alpha$ is algebraic over $F$ is $\alpha$ is the root of a non-zero polynomial in $F[x]$. Otherwise, $\alpha$ is transcendental over $F$.

Let $L / F$ be an extension of fields, and let $\alpha \in L . F[\alpha]$ is the subring of $L$ given by:

$$
\begin{equation*}
F[\alpha]=\left\{a_{0}+a_{1} \alpha+a_{2} \alpha^{2}+\cdots+a_{n} \alpha^{n}: n \geq 0, a_{0} \ldots a_{n} \in F\right\} \tag{1}
\end{equation*}
$$

We can also define $F[\alpha]$ as the image of the evaluation map:

$$
\begin{equation*}
E_{\alpha}: F[x] \rightarrow F, E_{\alpha}(f(x))=f(\alpha) \tag{2}
\end{equation*}
$$

$F(\alpha)$ is the smallest subfield of $L$ containing both $F$ and $\alpha$.
$F[\alpha]$ is the smallest subring of $L$ containing both $F$ and $\alpha$.

Let $L / F$ be an extension of fields, and let $\alpha \in L$. Then:

$$
\begin{equation*}
F[\alpha]=F(\alpha) \Longleftrightarrow \alpha \text { is algebraic over } F \tag{3}
\end{equation*}
$$

Let $F$ be a field, and let $f(x) \in F[x]$ be a non-zero polynomial. Then:
(a): $\operatorname{dim}_{F} F[x] / f(x) F[x]=\operatorname{deg}(f)$
(b): Let $\alpha$ be a root of $f(x)$ in some extension field of $F$. Then $[F(\alpha): F] \leq \operatorname{deg}(f)$.
(c): Let $f(x)$ be irreducible in $F[x]$ and $f(\alpha)=0$. Then:

$$
F(\alpha) \cong F[x] / f(x) F[x] \text { and }[F(\alpha): F]=\operatorname{deg}(f)
$$

If $\alpha$ and $\beta$ are algebraic over $F$, then $\alpha+\beta$ and $\alpha \beta$ are as well.

### 7.2 Polynomial Roots and Multiplicative Subgroups

Let $R$ be a commutative ring, and let $f(x) \in R[x]$ be a non-zero polynomial.
(a): Let $\alpha$ be a root of $f(x)$. Then there is a polynomial $g(x) \in R[x]$ such that $f(x)=(x-\alpha) g(x)$.
(b): Let $R$ be an integral domain, and let $\alpha_{1} \ldots \alpha_{n} \in R$ be distinct roots of $f(x)$. Then there is a polynomial $g(x) \in R[x]$ such that $f(x)=\left(a-\alpha_{1}\right) \cdots\left(x-\alpha_{n}\right) g(x)$.
(c): Let $R$ be an integral domain. A non-zero polynomial $f(x) \in R[x]$ of degree $d$ has at most $d$ distinct roots in $R$.

Let $F$ be a field, and let $U \subseteq F^{*}$ be a finite subgroup of the multiplicative group of $F$. Then $U$ is a cyclic group.

Let $A$ be an abelian group, and let $\alpha \beta \in A$, and suppose that $o(\alpha)=m$ and $o(\beta)=n$.
(a): If $\operatorname{gcd}(m, n)$ is 1 , then $\alpha \beta$ has order $m n$.
(b): If $m$ is the largest order in elemnets of $A$. Then $n \mid m$.

### 7.3 Splitting Fields, Separability, and Irreducibility

Let $F$ be a field, $L / F$ an extension field, and let $f(x) \in F[x]$ be a non-zero polynomial. We say that $f$ splits completely in $L$ if $f(x)$ factors as:

$$
f(x)=c\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \cdots\left(c-\alpha_{d}\right)
$$

For some $\alpha_{1} \ldots \alpha_{d} \in L$.
We say that $L$ is a splitting field for $f(x)$ over $F$ if $f$ splits completely in $L$ but does not split completely in any proper subfield of $L$.

Let $F$ be a field and let $f \in F[x]$ be a non-zero polynomial. Then: (a): There exists an extension field $L / F$ that is a splitting field for $f(x)$ over $F$, (b): If $L / F$ is a splitting field for $f(x)$ over $F$, then the degree of $L / F$ is bounded by:

$$
[L: F] \leq \operatorname{deg}(f)!
$$

Let $F$ be a field, let $f(x) \in F[x]$ be a polynomial, and write $f(x)$ as:

$$
f(x)=a_{0}+a_{1} x+\cdots+a_{d} x^{d}
$$

Then, the formal derivative of $f(x)$ is:

$$
f^{\prime}(x)=a_{1}+2 a_{1} x+\cdots+d a_{d} x^{d-1}
$$

Let $F$ be a field, let $f(x), g(x) \in F[x]$ be polynomials, and let $a, b \in F$ be constants. Then: (a) Sum Rule: $(a f+b g)^{\prime}(x)=$ $a f^{\prime}(x)+b g^{\prime}(x)$.
(b) Product Rule: $(f g)^{\prime}(x)=f(x) g^{\prime}(x)=f^{\prime}(x) g(x)$.
(c) Chain Rule: $(f \circ g)^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)$.
(d) If $F$ has characteristic 0 , then $f^{\prime}(x)=0$ if and only if $f(x) \in F$ ( $f$ is a constant polynomial).
(e): If $F$ has characteristic $p>0$, then $f^{\prime}(x)=0$ if and only if there is a polynomial $f_{1}(x) \in F[x]$ such that $f(x)=f_{1}\left(x^{p}\right)$.

Let $F$ be a field and let $f(x) \in F[x]$ be a non-zero polynomial. $f$ is separable if its roots are distinct. If $f$ has one or more repeated roots, it is inseparable.

Let $F$ be a field, and let $f(x) \in F[x]$ be a non-constant polynomial. Then:

$$
f \text { is separable } \Longleftrightarrow \operatorname{gcd}\left(f(x), f^{\prime}(x)\right)=1
$$

Let $F$ be a field. Then: (a): All irreducible $f(x) \in F[x]$ with a non-zero derivative are separable.
(b): If $F$ has characteristic 0 , then every irreducible polynomial in $F[x]$ is separable.

### 7.4 Finite Fields Revisited

Let $p$ be a prime and let $d \geq 1$. Then: (a): There exists a field $F$ containing exactly $p^{d}$ elements.
(b): Any two fields containing $p^{d}$ elements are isomorphic.

