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1 Groups

1.1 Definitions and Properties

A permutation of a set X is a bijective function whose domain and range are X. In other words, it is a bijective function:

π : X → X

A group consists of a set G and a composition law:

G×G→ G (g1, g2)→ g1 · g2

Satisfying the following axioms:

Identity Axiom: There exists an element e ∈ G such that, for all g ∈ G:

e · g = g · e = g

Inverse Axiom: For all g ∈ G there is an element g−1 ∈ G such that:

g · g−1 = g−1 · g = e

Associative Law: For all g1, g2, g3 ∈ G, we have that:

g1 · (g2 · g3) = (g1 · g2) · g3

Commutative Law: While this is not necessary for G to be a group, if for all g1, g2 ∈ G we have the following, G is
commutative or abelian:

g1 · g2 = g2 · g1

Let G be a group. Then:

(a): G has exactly one identity element.
(b): Each element of G has exactly one inverse.
(c): Let g, h ∈ G. Then (g · h)−1 = h−1 · g−1.
(d): Let g ∈ G. Then (g−1)−1 = g.

The order of a group G, denoted #G, is the cardinality of the set of elements of G.

The order of an element g ∈ G is the smallest integer n ≥ 1 such that gn = e. If no n exists, then g has infinite order.

Let G be a group, let g ∈ G. The order of g divides the order of G.

1.2 Examples of Groups

The set of integers modulo m, denoted Z/mZ, form the group of integers modulo m with addition as the group law.

The set of real numbers R, the set of rational numbers Q, and the set of complex numbers C all form groups with addition
as the group law. The set of positive or non-zero real numbers also form groups with multiplcation as the group law.

A group G is a cyclic group if there is an element g ∈ G such that G = {...g−1, e, g, g2, ...}. In other words, all other
elements are generated by g, and g is called the generator of G. We denote the cyclic groups of the integers up to n as Cn.
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The symmetric group of X, denoted SX , is the collection of all permutations of X, with the group law being the
composition of permuations.

The group of n × n matrices, A, such that det(A) 6= 0 is the general linear group, denoted GLn(X), where X is the
group where the entries live in.

The group of symmetries of a regular n-gon is the n’th dihedral group, denoted Dn. There are exactly n rotations and
n flips in this group.

The quaternion group Q is a non-commutative group with eight elements with operations you can look up:

Q = {±1,±i,±j,±k}

1.3 Group Homomorphisms

Let G and G′ be groups. A group homomorphism from G to G′ is a function φ : G→ G′ such that, for all g1, g2 ∈ G:

φ(g1 · g2) = φ(g1) · φ(g2)

The above is sufficient to prove the following two properties:

(a): Let e ∈ G be the identity element of G. Then φ(e) is the identity element of G′.
(b): Let g ∈ G. Then φ(g−1) = φ(g)−1.

Let G1 and G2 be groups. These groups are isomorphic if there exists a bijective homomorphism φ : G1 → G2, which we
call an isomorphism. In this case, G1 and G2 are the same group, just relabelled.

1.4 Subgroups, Cosets, and Lagrange’s Theorem

Let G be a group. A subgroup of G is a subset H ⊂ G that is also a group under G’s group law. That is, H satisfies:

(a): For all h1, h2 ∈ H, h1 · h2 ∈ H.
(b): e ∈ H.
(c): For all h ∈ H, h−1 ∈ H.

We note that all groups have two trivial subgroups, {e} and G itself.

Let G be a group, let g ∈ G have order n. The cyclic subgroup of G generated by g is:

〈g〉 = {...g−1, e, g, g2...}

It is isomorphic to the cyclic group Cn.

Let φ : G→ G′ be a group homomorphism. The kernel of φ is the set:

ker(φ) = {g ∈ G : φ(g) = e′}

Let φ : G→ G′ be a group homomorphism. Then:

(a): ker(φ) is a subgroup of G.
(b): φ is injective if and only if ker(φ) = {e}.
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Let G be a group, and let H ⊂ G be a subgroup of G. For all g ∈ G, the (left) coset of H attached to g is the set:

gH = {gh : h ∈ H}

Let G be a finite group, and let H ⊂ G be a subgroup of G. Then:

(a): Every element of G is in some coset of H.
(b): Every coset of H has the same number of elements.
(c): Let g1, g2 ∈ G. Then either:

g1H = g2H or g1H ∩ h2H = ∅

Lagrange’s Theorem: Let G be a finite group, and let H ⊂ G be a subgroup of G. Then the order of H divides the order
of G.

Let G be a group and let H ⊂ G be a subgroup of G. The index of H in G, denoted (G : H), is the number of distinct
cosets of H.

Let G be a finite group, and let g ∈ G. Then the order of g divides the order of G.

Let p be a prime and let G be a group of order p. Then G is isomorphic to Cp. In other words, G is a cyclic group.

Let p be a prime and let G be a group of order p2. Then G is an abelian group.

(Sylow’s Theorem): Let G be a finite group, let p be prime, and suppose that pn | #G for some n ≥ 1. Then G has a
subgroup of order pn.

1.5 Products of Groups

Let G1 and G2 be groups. The product of G1 and G2 is the group:

G1 ×G2 = {(a, b) : a ∈ G1, b ∈ G2}

Where:
(a, b) · (a′, b′) = (a · a′, b · b′)

(Structure Theorem for Finite Abelian Groups): Let G be a finite abelian group. Then there are integers m1...mr

where each mi is a prime power such that:

G ∼= (Z/m1Z)× ...× (Z/mrZ)
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2 Rings

A ring R is a set with two operations, called addition (a+ b) and multiplication (a · b), satisfying the following axioms:

(a): Addition Properties: The set R with addition law + is an abelian group with identity 0R.
(b): Multiplication Properties: The set R with multiplication law · satisfies Identity Law and Associative Law.
(c): Distributive Law: For all a, b, c ∈ R we have:

a · (b+ c) = a · b+ a · c

(b+ c) · a = b · a+ c · a

(d): While this is not necessary for R to be a ring, if for all a, b ∈ R, a · b = b · a, the ring is commutative.

Let R be a ring. Then:

(a): For all a ∈ R, 0R · a = 0R.
(b): For all a, b ∈ R, (−a) · (−b) = a · b.

Let R and R′ be rings. A ring homomorphism from R to R′ is a function φ : R→ R′ satisfying:

(a): φ(1R) = 1R′ .
(b): φ(a+ b) = φ(a) + φ(b).
(c): φ(a · b) = φ(a) · φ(b).

We say that R and R′ are isomorphic if there is a bijective ring homomorphism φ : R→ R′, called an isomorphism.

The kernel of φ is the set of elements:
ker(φ) = {a ∈ R : φ(a) = 0R′}

2.1 Examples of Rings

The following are rings.
Z/mZ

Z[i] = {a+ bi : a, b ∈ Z}

R[x] = {polynomials with coefficients in R.}

H = {a+ bi+ cj + dk : a, b, c, d ∈ R}

Let R be a ring. There is a unique homomorphism φ : Z→ R.

2.2 Properties of Rings

A field is a commutative ring R where every non-zero element of R has a multiplicative inverse.

Let R be a commutative ring. R has the cancellation property if for all a, b, c ∈ R, the following holds:

ab = ac ∧ a 6= 0 ⇐⇒ b = c

Let R be a ring. An element a ∈ R is called a zero divisor if a 6= 0 and there exists a non-zero element b ∈ R such that
ab = 0. The ring R is an integral domain if it has no zero divisors.
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2.3 Unit Groups and Product Rings

Let R be a commutative ring. The group of units of R is the subset R∗ ⊂ R defined by:

R∗ = {a ∈ R : ∃b ∈ R, ab = 1}

Elements of R∗ are called units.

The set of units R∗ is a group with group law being ring multiplication.

Let m ≥ 1 be an integer. Then:
(Z/mZ)∗ = {amodm : gcd(a,m) = 1}

If p is a prime, then Z/mZ is a field, denoted Fp

Let R1...Rn be rings. The product of R1...Rn is the ring:

R1 × ...×Rn = {(a1, ...an) : a1 ∈ R1...an ∈ Rn}

Let R1...Rn be rings. Then:
(R1 × ...×Rn)∗ ∼= R∗1 × ...×R∗n

2.4 Ideals and Quotient Rings

Let R be a commutative ring. An ideal of R is a non-empty subset I ⊆ R such that:

(a): If a, b ∈ I, a+ b ∈ I,
(b): If a ∈ I and r ∈ R, then ra ∈ I.

Let R be a commutative ring, and let c ∈ R. The principal ideal generated by c, denoted cR or (c), is the set of all
multiples of c:

cR = (c) = {rc : r ∈ R}

Let R be a commutative ring and let I ⊆ R be an ideal of R. For each element a ∈ R, the coset of a is the set:

a+ I = {a+ c : c ∈ I}

If a− b ∈ I, we say that a is congruent to b modulo I, denoted:

a ≡ b

And we define addition and multiplication of cosets as follows:

(a+ I) + (b+ I) = (a+ b) + I

(a+ I) · (b+ I) = (a · b) + I

And we denote the collection of distinct cosets by R/I, called a quotient ring.

Let R be a commutative ring, and let I ⊆ R be an ideal of R. Then:

(a): Let a+ I and a′ + I be two cosets. Then a′ + I = a+ I if and only if a′ − a ∈ I.
(b): Addition and multiplication of cosets is well defined.
(c): Addition and multiplcation of cosets turns R/I into a commutative ring, called a quotient ring.
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Let R be a commutative ring.

(a): Let I ⊆ R be an ideal of R. Then the following map is a ring homomorphism whose kernel is I:

ψ : R→ R/I, a→ a+R

(b): Let φ : R→ R′ be a ring homomorphism. Then:
(i): The kernel of φ is an ideal of R.
(ii): φ is injective if and only if ker(φ) = {0}
(iii): There is a well-defined injective ring homomorphism:

φ : R/Iφ → R′, φ(a+ Iφ) = φ(a)

Let R be a ring, and let φ : Z → R be the unique homomorphism deterined by the condition that φ(1) = 1R. Then, there
is a unique integer m ≥ 0, called the characteristic of R, such that:

ker(φ) = mZ

Let p be prime, and let R be a commutative ring of characteristic p. Then the following map is a ring homomorphism,
called the Frobenius homomorphism of R:

f : R→ R, f(a) = ap

We notice also that for all a, b ∈ R and all n ≥ 0, we have:

(a+ b)p
n

= ap
n

+ bp
n

2.5 Prime Ideals and Maximal Ideals

Let R be a commutative ring. An ideal I ⊆ R is a prime ideal if I 6= R and, if whenever ab ∈ I, either a ∈ I or b ∈ I. Or,
in other words, for two a, b /∈ I, ab /∈ I.

Let R be a commutative ring. An ideal I is called a maximal ideal if I 6= R and if there is no ideal properly contained
between I and R. In other words, if J is an ideal and I ⊆ J ⊆ R, either J = I or J = R.

Let R be a commutative ring, and let I be an ideal with I 6= R. Then:

(a): I is a prime ideal if and only if the quotient ring R/I is an integral domain.
(b): I is a maximal ideal if and only if the quotient ring R/I is a field.

Corollary: Every maximal ideal is a prime ideal.
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3 Vector Spaces

A field is a commutative ring F with the property that for every non-zero a ∈ F , where is an element b ∈ F such that
ab = 1.

Let F be a field. A vector space with field of scalars F , or, an F -vector space, is an abelian group V with a rule
for multiplying a vector v ∈ V by a scalar c ∈ F to obtain a new vector cv ∈ V . Vector addition and scalar multiplication
satisfy the following axioms:

Identity Law: For all v ∈ V :
1v = v

Distributive Law #1: For all v1, v2 ∈ V , c ∈ F :

c(v1 + v2) = cv1 + cv2

Distributive Law #2: For all v ∈ V , c1, c2 ∈ F :

(c1 + c2)v = c1v + c2v

Associative Law: For all v ∈ V , c1, c2 ∈ F :
(c1c2)v = c1(c2v)

Let V be an F -vector space. Then:

(a): For all v ∈ V , 0v = 0.
(b): For all v ∈ V , (−1)v + v = 0.

Let F be a field, and let V and W be F -vector spaces. A linear transformation from V to W is a function:

L : V →W

Satisfying for all v1, v2 ∈ V , c1, c2 ∈ F :
L(c1v1 + c2v2) = c1L(v1) + c2L(v2)

3.1 Bases and Dimension

Let V be an F -vector space. A finite basis for V is a finite set of vectors B = {v1, ...vn} ⊂ V such that every vector v ∈ V
can be uniquely written as a linear combination of elements in B.

Let V be an F -vector space, and let A = {v1, ...vn} be a set of vectors in V . Then:

(a): The set A spans V is every vector in V is a linear combination of the vectors in A. The set of linear combinations of
vectors in A is called the span of A, denoted Span(A).

(b): The set A is linearly independent if the only solution to the following is the trivial solution:

a1v2 + ...+ anvn = ~0

Let v be an F -vector space, and let A = {v1, ...vn} be a set of vectors in V . Then A is a basis for V if and only if A spans
V and is linearly independent.

Let V be an F -vector space, let A be a finite set of vectors in V that spans V , and let L ⊆ S be a subset of S that is
linearly independent. Then there is a basis for V satisfying:

L ⊆ B ⊆ S
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Let V be a vector space with a finite basis. Then every basis for V has the same number of elements.

Let V be a vector space with a finite basis. The dimension of V is the number of vectors in a basis of V , denoted dimF (V ).
We know that this is well defined.

Let V be an F -vector space, let S be a finite set of vectors in V that span V , and let L be a set of vectors that is linearly
independent. Then, given any vectors v ∈ L−S, we can find a vector w ∈ S −L so that the following is still a spanning set:

(S − {w}) ∪ {v}

Let V be an F -vector space, let S ⊂ V be a finite set that spans V , and let L ⊂ V be a linearly independent set. Then:

#L ≤ #S
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4 Fields

A field is a commutative ring F with the property that for every non-zero a ∈ F there is an element b ∈ F such that ab = 1.

Let R be a commutative ring. The unit group of R is the group:

R∗ = {a ∈ R : ∃b ∈ R, ab = 1}

We can use this define a field as:
F ∗ = {a ∈ F : a 6= 0} = F − {0}

Let F and K be fields, and let φ : F → K be a ring homomorphism. Then:

(a): φ is injective.
(b): Let a ∈ F ∗. Then φ(a−1) = φ(a)−1.

A skew field, also called a division ring, is a ring where all non-zero elements have multiplicative inverses, but the ring
is not necessarily commutative.

A famous result of Wedderburn says that all finite skew fields are fields.

4.1 Subfields and Extension Fields

Let K be a field. A subfield of K is a subset F ⊂ K that it itself a field using the addition and multiplication operations
from K.

Let F be a field. An extension field of F is a field K such that F is a subfield of K. We write K/F to indicate that K is
an extension field of F .

Let L/F be an extension of fields, and let α1, ...αn ∈ L. Then there is a unique field K such that:

(a): F ⊂ K ⊆ L.
(b): α1, ...αn ∈ K.
(c): If K ′ is a field satisfying F ⊆ K ′ ⊆ L, K ⊆ K ′.

Let K/F be an extension of fields. The degree of K over F , denoted [K : F ], is the dimension of K when viewed as an
F -vector space. If [K : F ] is finite, then K/F is a finite extension - otherwise, K/F is an infinite extension.

Let L/K/F be extensions of fields. Then:
[L : F ] = [L : K][K : F ]

As long as all of [L : F ], [L : K], [K : F ] are finite, or if [L : F ] is infinite, then either [L : K] or [K : F ] is infinite.

4.2 Polynomial Rings

Let F be a field, and let f(x) ∈ F [x] be a non-zero polynomial, written as:

f(x) = a0 + a1x+ ...+ adx
d

The degree of f is:
deg(f) = d

Moreover, if ad = 1, then f is a monic polynomial.
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Let f1(x), f2(x) ∈ F [x] be non-zero polynomials. Then:

deg(f1f2) = deg(f1) + deg(f2)

Let F be a field, and let f(x), g(x) ∈ F [x] be polynomials with g(x) 6= 0. Then there are unique polynomials q(r), r(x) ∈ F [x]
with deg(r) < deg(g) satisfying:

f(x) = g(x)q(x) + r(x)

Let F be a field and let I ⊆ F [x] be an ideal in the ring F [x]. Then I is a principal ideal.

4.3 Building Extension Fields

Let F be a field. A non-constant polynomial f(x) ∈ F [x] is reducible (over F ) if there exists non-constant polynomials
g(x), h(x) ∈ F [x] such that f(x) = g(x)h(x). An irreducible polynomial is a non-constant polynomial that has no such
non-trivial factorizations in F [x].

Let F be a field, and let f(x) ∈ F [x] be a non-zero polynomial. The following are equivalent:

(a): The polynomial f(x) is irreducible.
(b): The principal ideal f(x)F [x] generated by f(x) is a maximal ideal.
(c): The quotient ring F [x]/f(x)F [x] is a field.

Let F be a field, let f(x) ∈ F [x] be an irreducible polynomial, let If = f(x)F [x] be the principal ideal generated by f(x)
and let Kf = F [x]/If be the indicated quotient ring.

(a): The ring Kf is a field.
(b): The field Kf is a finite extension of the field of F . Its degree is given by:

[Kf : F ] = deg(f)

(c): The polynomial f(x) has a root in Kf .

4.4 Finite Fields

NOTE: We are missing some stuff with regards to counting polynomials, since it is painful. Refer to the textbook for this!

Let F be a finite field. Then,

(a): The characteristic of F is prime.
(b): Let p = char(F ). Then the finite field Fp is a subfield of F , in the sense that there exists a unique injective
homomorphism from Fp to F .
(c): The number of elements of F is given by:

#F = p[F :Fp]

Let p be prime, and let d ≥ 1. Then the ring Fp[x] contains an irreducible polynomial of degree d.

Let p be a prime and let d ≥ 1. Then,

(a): There exists a field F containing exactly pd elements.
(b): Any two fields containing pd elements are isomorphic.
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5 Groups Continued

5.1 Normal Subgroups and Quotient Groups

Let G be a group and let H be a subgroup of G. We denote the set of (left) cosets of G by:

G/H = {(left) cosets of H}

Let G be a group, let H ⊆ G be a subgroup of G, and let C1 and C2 be cosets of H. We define the product of C1 and C2
by the rule:

C1 · C2 = g1g2H

For some g1 ∈ C1 and some g2 ∈ C2. Note that this is only well defined if H is a normal subgroup.

Let G be a group, let H ⊆ G be a subgroup of G, and let g ∈ G. The g-conjugate of H is the subgroup:

g−1Hg = {g−1hg : g ∈ G}

Let G be a group, let H ⊆ G be a subgroup of G, and let g ∈ G. H is a normal subgroup of G is, for all g ∈ G,

g−1Hg = H

If G is abelian, than all subgroups are normal. All groups G trivially have two normal subgroups, {e} and G. If these are
the only two subgroups, then G is called a simple group.

Let φ : G→ G′ be a group homomorphism. Then ker(φ) is a normal subgroup of G.

Let G be a group and let H ⊂ G be a subgroup. Then:

(a): If g−1Hg ⊆ H for all g ∈ G, then H is a normal subgroup of G.
(b): For all g ∈ G, g−1Hg is a subgroup of G.
(c): For all g ∈ G, the map H → g−1Hg defined by h→ g−1hg is a group isomorphism.

Let G be a group, and let H ⊂ G be a normal subgroup of G. Let g1, g
′
1, g2, g

′
2 ∈ G be elements such that:

g′1H = g1H ∧ g′2H = g2H

Then:
g′1g
′
2H = g1g2H
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Let G be a group, and let H ⊂ G be a normal subgroup of G. Then:

(a): The collection of cosets G/H is a group with the well-defined group operation:

g1H · g2H = g1g2H

(b): The following map is a homomorphism with ker(φ) = H:

φ : G→ G/H, φ(g) = gH

(c): Let ψ : G→ G′ be a homomorphism with H ⊆ ker(φ). Then there is a unique homomorphism:

λ : G/H → G′ such that λ(gH) = ψ(g)

(d): If we take H = ker(ψ) in (c), then λ is injective. In particular, the following is an isomorphism onto the image of λ:

λ : G/ker(φ)→ λ(G) ⊆ G′

5.2 Groups Acting on Sets

Let G be a group, and let X be a set. An action of G on X is a rule that assigns each element g ∈ G and each element
x ∈ X another element g · x ∈ X such that:

(1): For all x ∈ X, e · x = x.
(2): For all x,∈ X and all g1, g2 ∈ G, (g1g2)x = g1(g2x).

Alternatively, we can define an action of G on X as a group homomorphism:

α : G→ SX

where α returns a permutation of the elements of X, and g · x = α(g)(x).

Given a group G acting on a set X, we get two important quantities.

The orbit of x is the set of elements in X that G sends x to:

Gx = {gx : g ∈ G}

The stabilizer of x is the set of elements in X that G leaves unchanged:

Gx = {g ∈ G : gx = x}

Let G be a group that acts on a set X. Then:

(a): Every element of X is in some orbit.
(b): Let x ∈ X. Gx is a subgroup of G.
(c): Let x ∈ X. Then:

#Gx ·#Gx = #G

(d): Let x1, x2 ∈ X. Then the orbits Gx1 and Gx2 are either equal or disjoint.

We say that G acts transitively on X if, for all x ∈ X, Gx = X.

5.3 Orbit-Stabilizer Counting Theorem
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(Orbit-Stabilizer Counting Theorem): Let G be a finite group that acts on a finite set X. Then:

#X =

n∑
i=1

#Gxi =

n∑
i=1

#G

#Gxi

Let G be a group. The center of G, denoted Z(G), is the set of elements in G that commute with every element of G:

Z(G) = {g ∈ G : gg′ = g′g,∀g′ ∈ G}

For subgroups H ⊆ G, the normalizer of H is:

NG(H) = {g ∈ G : g−1Hg = H}

Let p be a prime, and let G be a finite group with pn elements for some n ≥ 1. Then Z(G) 6= {e}.

Let p be a prime, and let G be a group with p2 elements. Then G is abelian.

5.4 Sylow’s Theorem: Part 1

Sylow’s Theorem: Part 1. Let G be a finite group, let p be a prime, and let pn be the largest power of p that divides
#G. Then G has a subgroup of order pn.

Let p be a prime, let n ≥ 0, and let m ≥ 1 with p - m. Then
(
pnm
mn

)
is not divisible by p.

Let G be a finite group, let p be a prime, and let pn be the largest power of p that divides #G. A subgroup H ⊆ G with
#H = pn is called a p-Sylow subgrou pof G. G must have at least one Sylow subgroup.

Sylow’s Theorem. Let G be a finite group, and let p be a prime. Then:

(a): G has at least one p-Sylow subgroup.
(b): Let H1 and H2 be p-Sylow subgroups of G. Then H1 and H2 are conjugate: H1 = gH2g

−1 for some g ∈ G.
(c): Let H be a p-Sylow subgroup of G, and let k be the number of distinct p-Sylow subgroups of G. Then k | #G and
k ≡ 1modp.

5.5 Two Counting Lemmas

Let G be a finite group and let H ⊆ G be a subgroup. Then H has exactly #G/#N(H) distinct conjugates in G.

Let G be a finite group, let A and B be subgroups of G, and let AB = {ab : a ∈ A, b ∈ B}. Then:

#(AB) =
#A ·#B
#(A ∩B)

5.6 Double Cosets and Sylow’s Theorem
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Let H1, H2 be subgroups of G. The double coset associated to g is the set:

H1gH2 = {h1gh2 : h1 ∈ H1, h2 ∈ H2}

We can define a double coset equivalence relation on G by saying g g′ if g′ = h1gh2 for some h1 ∈ H1 and h2 ∈ H2.

Let H1, H2 be subgroups of G, and let g ∈ G. Then:

#H1gH2 =
#H1 ·#H2

#(g−1G1g ∩H2
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6 Rings Continued

6.1 Irreducible Elements and Unique Factorization Domains

Let R be a ring, and let a ∈ R be a unit if it has a multiplicative inverse. The set of units of R, denoted R∗, is a group
with group law multiplication.

Let R be a ring. A non-zero element a ∈ R is irreducible if a is not a unit and the only way to factor a = bc is for either
b or c to be a unit.

Let R be an integral domain. Then R is a unique factorization domain (UFD) if:

(a): For all a ∈ R, we can write a = b1 · b2 · · · bn for irreducible b1, b2, . . . bn ∈ R.
(b): Suppose b1, b2, . . . bn ∈ R and c1, c2, . . . cm ∈ R are all irreducible, and that their products are equal. Then n = m and
each ci = uibi, after relabelling.

Let F be a field. Then the ring F [x1, . . . , xn] is a UFD.

6.2 Euclidean Domains and Principal Ideal Domains

A ring R is a principal ideal domain (PID) if it is an integral domain in which every ideal of R is principal.

A ring R is a Euclidean domain if it is an integral and there is a size function:

σ : R→ {0, 1, 2, . . .}

Such that:

(a): σ(a) = 0 ⇐⇒ a = 0.
(b): For all a, b ∈ R with b 6= 0, there exist q, r ∈ R such that:

a = bq + r, σ(r) < σ(b)

(3): For all a, b ∈ R we have σ(ab) = σ(a)σ(b).

Every Euclidean domain is a PID.

The ring of Gaussian integers Z[i] is a Euclidean domain with size function:

σ(a+ bi) = a2 + b2

Let R be a PID and let c ∈ R. The following are equivalent:

(a): c is irreducible.
(b): The principal ideal cR is maximal.
(c): The quotient ring R/cR is a field.

Let R be an integral domain, and let a, b ∈ R. We say that b divides a is we can write a = bc for some c ∈ R, and we
denote this b | a. We note that this is equivalent to the assertion a ∈ bR, as well as aR ⊆ bR.
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Let R be a PID and let a, b, c ∈ R. Suppose a is irreducible and a | bc. Then either a | b or a | c or both.

Let R be a PID and let a, b1, . . . bn ∈ R. Suppose that a is irreducible and divides the product of bi’s. Then a divides at
least one bi.

Let R be a Euclidean domian with size function σ, and let u ∈ R. Then u ∈ R∗ if and only if σ(u) = 1.

Let R be a PID. Then R is a UFD.

The rings Z, Z[i], and F [x] for a field F and UFDs.

6.3 Field of Fractions

Note: this part isn’t easily summarizable. I recommend looking at the book.

Let R be an integral domain. There exists a field F , called the field of fractions of R, with the following properties:

(a): R is a subring of F .
(b): If R is a subring of some other field K, then there is a unique injective homomorphism F → K that takes R to itself
by the identity map.
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7 Fields Continued

7.1 Algebriac Numbers and Transcendental Numbers

Let L/F be an extension of fields, and let α ∈ L. We say α is algebraic over F is α is the root of a non-zero polynomial
in F [x]. Otherwise, α is transcendental over F .

Let L/F be an extension of fields, and let α ∈ L. F [α] is the subring of L given by:

F [α] = {a0 + a1α+ a2α
2 + · · ·+ anα

n : n ≥ 0, a0 . . . an ∈ F} (1)

We can also define F [α] as the image of the evaluation map:

Eα : F [x]→ F,Eα(f(x)) = f(α) (2)

F (α) is the smallest subfield of L containing both F and α.

F [α] is the smallest subring of L containing both F and α.

Let L/F be an extension of fields, and let α ∈ L. Then:

F [α] = F (α) ⇐⇒ αis algebraic overF (3)

Let F be a field, and let f(x) ∈ F [x] be a non-zero polynomial. Then:

(a): dimFF [x]/f(x)F [x] = deg(f)
(b): Let α be a root of f(x) in some extension field of F . Then [F (α) : F ] ≤ deg(f).
(c): Let f(x) be irreducible in F [x] and f(α) = 0. Then:

F (α) ∼= F [x]/f(x)F [x] and [F (α) : F ] = deg(f)

If α and β are algebraic over F , then α+ β and αβ are as well.

7.2 Polynomial Roots and Multiplicative Subgroups

Let R be a commutative ring, and let f(x) ∈ R[x] be a non-zero polynomial.

(a): Let α be a root of f(x). Then there is a polynomial g(x) ∈ R[x] such that f(x) = (x− α)g(x).
(b): Let R be an integral domain, and let α1 . . . αn ∈ R be distinct roots of f(x). Then there is a polynomial g(x) ∈ R[x]
such that f(x) = (a− α1) · · · (x− αn)g(x).
(c): Let R be an integral domain. A non-zero polynomial f(x) ∈ R[x] of degree d has at most d distinct roots in R.

Let F be a field, and let U ⊆ F ∗ be a finite subgroup of the multiplicative group of F . Then U is a cyclic group.

Let A be an abelian group, and let αβ ∈ A, and suppose that o(α) = m and o(β) = n.

(a): If gcd(m,n) is 1, then αβ has order mn.
(b): If m is the largest order in elemnets of A. Then n | m.

7.3 Splitting Fields, Separability, and Irreducibility
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Let F be a field, L/F an extension field, and let f(x) ∈ F [x] be a non-zero polynomial. We say that f splits completely
in L if f(x) factors as:

f(x) = c(x− α1)(x− α2) · · · (c− αd)

For some α1 . . . αd ∈ L.

We say that L is a splitting field for f(x) over F if f splits completely in L but does not split completely in any proper
subfield of L.

Let F be a field and let f ∈ F [x] be a non-zero polynomial. Then: (a): There exists an extension field L/F that is a
splitting field for f(x) over F ,
(b): If L/F is a splitting field for f(x) over F , then the degree of L/F is bounded by:

[L : F ] ≤ deg(f)!

Let F be a field, let f(x) ∈ F [x] be a polynomial, and write f(x) as:

f(x) = a0 + a1x+ · · ·+ adx
d

Then, the formal derivative of f(x) is:

f ′(x) = a1 + 2a1x+ · · ·+ dadx
d−1

Let F be a field, let f(x), g(x) ∈ F [x] be polynomials, and let a, b ∈ F be constants. Then: (a) Sum Rule: (af + bg)′(x) =
af ′(x) + bg′(x).
(b) Product Rule: (fg)′(x) = f(x)g′(x) = f ′(x)g(x).
(c) Chain Rule: (f ◦ g)′(x) = f ′(g(x))g′(x).
(d) If F has characteristic 0, then f ′(x) = 0 if and only if f(x) ∈ F (f is a constant polynomial).
(e): If F has characteristic p > 0, then f ′(x) = 0 if and only if there is a polynomial f1(x) ∈ F [x] such that f(x) = f1(xp).

Let F be a field and let f(x) ∈ F [x] be a non-zero polynomial. f is separable if its roots are distinct. If f has one or more
repeated roots, it is inseparable.

Let F be a field, and let f(x) ∈ F [x] be a non-constant polynomial. Then:

f is separable ⇐⇒ gcd(f(x), f ′(x)) = 1

Let F be a field. Then: (a): All irreducible f(x) ∈ F [x] with a non-zero derivative are separable.
(b): If F has characteristic 0, then every irreducible polynomial in F [x] is separable.

7.4 Finite Fields Revisited

Let p be a prime and let d ≥ 1. Then: (a): There exists a field F containing exactly pd elements.
(b): Any two fields containing pd elements are isomorphic.
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