
Literature Review: Making Multiparty Computation
Industry-Viable for Data Processing and Retrieval

Nick Young
Brown University

nicholas young@brown.edu

1. OVERVIEW
Multi-party computation (MPC) allows multiple parties to
compute over shared data without compromising the privacy
or integrity of any party’s data. Many industries benefit
from being able to derive insights from a wider pool of data
without learning more than they need to; common exam-
ples include hospitals jointly computing biomedical statis-
tics without leaking confidential patient information; or fi-
nancial firms jointly computing market share data without
leaking information about their firm’s behaviour. In par-
ticular, parties can jointly answer SQL queries over shared
data using techniques including garbled circuits [12], oblivi-
ous RAM [6], or secret sharing [2]. While we could generate
protocol-specific MPC for each query type we may want to
answer, a more generic and flexible solution is to develop
techniques to optimize our use of MPC in query execution.

Work has been done to scale MPC to a higher number of par-
ties; however, scaling to a higher number of inputs to make
this computation feasible for industry applications is an area
of active research. Interestingly, one of the approaches that
helps scale MPC to large workloads is to find ways to min-
imize its usage. Given that MPC is much slower (on the
order of 105× to 107× slower [19]) than local computation,
the more systems can operate on data in the clear or offload
computation to a trusted party, the less unnecessary com-
pute they will incur. In this literature review, we’ve iden-
tifies three main categories of techniques that help reduce
MPC usage in SQL query evaluation.

First, we have techniques with roots in database query op-
timization, informed by work in information flow control.
By annotating data with fine-grained privacy controls, we
can be very selective with how much data is revealed to
other parties, potentially leading to huge speedups by allow-
ing more computation to be done outside of MPC through
rewriting query plans. Traditional query optimizations don’t
necessary work in the MPC setting, and so work has been
done to redefine a set of MPC query optimizations. These

optimizations range from rule-based to cost-based.

Second, we have optimizations in query execution itself. En-
abled by knowledge on which sets of data should be available
to which parties, a suite of optimizations that allow partial
or parallelized execution of queries in the MPC setting have
blossomed. With minimal sacrifice in the security properties
of our system, we can execute many operations much faster
by offloading work to trusted parties.

Third, we have technologies inspired and enabled by the
development of secure enclaves. A recent surge in secure
hardware that allows isolated and verifiable execution at
processor speeds enabled the development of new oblivious
execution primitives for query execution. These primitives
allow us to use MPC with more aggressive security models,
leveraging the fact that the hardware itself is secure.

In this literature review, we review the techniques and tech-
nologies used to improve performance of MPC in data re-
trieval and processing and compare them to alternatives for
secure data processing. In particular, we focus on query op-
timization, information flow control, query execution, and
oblivious secure enclaves.

2. BACKGROUND
Many industry players are in the game of big data process-
ing, in which incredibly large datasets are crunched to derive
business insights or make decisions on the fly. In the trusted
setting, data processing is primarily done using distributed
query evaluation engines such as Spark [17] over datasets
stored in a distributed relational database. These engines
typically expose a SQL front-end to answer queries and ab-
stract away the rest of the details. The benefit of using a
distributed query execution engine is to enable much faster
query response times even as datasets grow arbitrarily large
by scaling horizontally. Many industry players have grown
around these engines and rely on them heavily for their data
processing needs.

However, these engines all assume a trusted setting, where
all of the data is owned by the same party. A common
example for multi-party data processing is medicine [14]
[3]. Often, hospitals collect the same data as their peers;
data about patient morbidity, race, medical history, scans,
etc. However, patient protection laws including HIPAA pre-
vent hospitals from sharing raw data with their peers. This
severely limits their capacity to derive insight from their

1



joint data, especially for research. It’s clear that MPC would
be useful in this setting.

Let’s attach some formal terms to concretize our setting,
which we borrow from [3]. A federated database is a
database in which shards or tables are owned by different
parties that may not be mutually trusting. A shard is a
subset of the data in a table, which inherits its usual defi-
nition. To exercise these definitions, consider two scenarios:

1. In the hospital scenario, each hospital holds a shard of
each table, but no hospital controls any one table in
full. The federated units are the individual hospitals.

2. In the financial scenario, one federated unit might be
a firm under audit, while the other might be the FCC.
Each unit may control different tables in full, or a
shard of some table.

2.1 Software environment
We wish to use MPC in an ergonomic fashion to answer
database queries in the same way that engines like Spark do.
Using a standardized interface such as SQL with an appro-
priate backend, we can abstract away the underlying multi-
party computation so that parties can interact with data as
if it were totally ‘in the clear’. On top of providing a more
ergonomic interface, a standardized query language enables
more advanced and optimized query plans to be built over
MPC primitives, creating ample room for query processing
and optimization to improve the feasibility of using MPC in
industry. The techniques we explore will assume a common
SQL-based front-end and will largely apply optimizations to
the query plan to speed up computation.

For completeness, it’s worth describing some of the MPC
frameworks and techniques commonly used and referenced
in the literature. Garbled circuits allow two or more par-
ties to evaluate an arbitrary circuit in an oblivious manner;
no party will learn more than the output, and what can
be inferred from their inputs and the output [12]. Because
garbled circuits allow evaluation of an arbitrary circuit, they
allow evaluation of arbitrary functions, which make them an
excellent primitive for flexible query execution. In practice,
a framework called Obliv-C is used to compile an exten-
sion of C into garbled circuits [18]. The framework is easily
extendible and can be used to implement a variety of prim-
itives including ORAM [6].

Secret shares allow parties to split up secret values into
private pieces that can be computed on locally or with a
little bit of communication, while maintaining secrecy [2].
After the secret shares have been computed on, they can be
recombined to recover the final value. In practice, a frame-
work called Sharemind is used to implement secret sharing
[4]. Another framework called Wysteria combines both of
these techniques in a domain-specific language [13]. All of
these frameworks are well cited and used in the literature.

The primary barrier to using MPC in query processing is
that MPC is very slow; on the order of 105× to 107× slower
than computing in cleartext [19]. Query processing work-
loads are already prone to taking a long time to complete;
the slowdown incurred by naively applying MPC makes this

Figure 1: Example query plan

an infeasible option. Thus, we explore ways to apply MPC
in an informed manner.

2.2 Security model
Most of the literature assumes a semi-honest static adver-
sary, somewhat understandably. For big-data processing,
there may be a number of parties wanting to jointly com-
pute, but in general they will all be known and, therefore,
able to be held accountable. For processing of data of many
unknown parties, other technologies like fully homomorphic
encryption or blockchains may be a better fit. However,
some systems claim a straightforward path to security in
the malicious setting [14], and we will see shortly that we
can build primitives that work in stronger settings using
specialized hardware [19].

The attacks that we are principally concerned with guarding
against are information leakage and access pattern attacks.
Protecting against information leakage, as we will see, comes
down to being very careful that the optimizations we apply
are safe. The definition of what information is okay to leak
may also change depending on the framework we inspect,
and thus we take care in labelling which data is truly sen-
sitive. We will typically eschew security proofs in favor of
those cited in the literature. Access pattern attacks boil
down to an adversary inferring features of our data using
memory or network access patterns. Such attacks are pro-
tected against using oblivious access patterns.

3. QUERY OPTIMIZATION AND INFOR-
MATION FLOW CONTROL

3.1 What is query optimization?
Query optimization is the practice of taking a query plan and
applying rewrite rules to speed up response times without
affecting the output. A query plan is typically represented
as an AST with leaf nodes as data tables and nonleaf nodes
as relational operators such as joins or selects; see Figure 3.1
for an example of a query plan. Parsing a common front-end
like SQL into an AST is a well-solved issue [16].

Query optimization is well studied. The classic optimiza-
tion example in the trusted setting is predicate pushdown,
wherein filters are pushed through joins to be evaluted first.
By evaluating cheap filters before expensive joins, the database
system has fewer entries to process in later steps. Moreover,
notice that this doesn’t change the rows in the result, so
long as the predicate is only being evaluated on attributes
from one of the input tables to the join [11].

2



Another classic optimization example in the trusted setting
is join reordering. If we know the relative sizes of tables
apriori, we can choose to evaluate joins that will output
fewer rows first. This will lead to smaller relations being
inputted into later joins [11].

Optimizations can be split into two categories; rule-based
and cost-based. A rule-based optimization is one that is
applied to a particular pattern present in a query plan; pred-
icate pushdown is one such example. These optimizations
are valuable because they are typically evergreen and prov-
ably correct. A cost-based optimization, on the other hand,
leverages metadata about the relative sizes of data tables
and calculates heuristics to compare and choose between
query plans; join reordering is one such example. These
techniques are being applied to both database query plans
and MPC execution plans in state-of-the-art data processing
systems [1].

Many traditional query optimization techniques apply to the
MPC setting as well, in slightly modified forms. One could
apply traditional statistics and heuristics-based cost opti-
mization to decide between query plans. However, query
plan cost must be evaluated with MPC in mind; clearly,
query optimization with MPC involved requires insight into
the runtime and security properties of MPC to best opti-
mize the query while only revealing as much information as
is safe to do. For example, join reordering may not be ever-
green in the MPC setting, as it may cause early evaluation
of sensitive data, forcing more work to be done in MPC as
opposed to in the clear. In order to evaluate our query plans
with MPC in mind, we need to give it more information. We
do so using trust annotations and information flow control.

3.2 What is information flow control?
Information flow control (IFC) is the practice of tracking the
lifetime of software objects through an execution and main-
taining invariants on those objects. Work has been done
to use IFC techniques to preserve application security by
protecting data as it flows through the program [15]. Crit-
ically, many data flow assertions can be made at compile
time. Obliv-C uses similar techniques to disallow compila-
tions that would lead in leaking private variables (marked
obliv in the Obliv-C syntax). Many systems have a notion
of tagging data with information about its privacy level and
enforcing that privacy level across the program. Research
has been done to enforce policies through a policy engine or
through the type system itself [10].

In the query evaluation setting, we can apply IFC by tagging
input relations with their owners. From there, we can infer
ownership over intermediate variables to better understand
the set of parties that should be privy to certain informa-
tion. In more advanced systems, not only can we tag tables
with owners, but we can specify the privacy levels of spe-
cific columns as well as either public or private. Moreover,
we can also specify a set of selectively-trusted-parties (STPs)
for columns [14]. With these tags, each column will end up
with a trust set of one or more parties that are authorized to
view the data in the clear; all other parties shouldn’t learn
anything about the data. The idea behind such fine-grained
trust annotations is that we can exercise even more liberty
with optimizations the more we know about our query.

Using these trust annotations on input relations, we can de-
rive the owner of each intermediate relation in a query plan.
The owner of a child relation should be the intersection of
the owners of the parent relations. Consider some cases;
if a child relation is derived from a single parent relation,
the owner of the parent would have been able to run the
operation themselves. So, they are already privy to all in-
formation in the child relation, making them a reasonable
owner. If a child relation is derived from two parent rela-
tions, the child relation would leak information about both
input relations; thus, only those that owned both parent re-
lations should own the child relation. This is called forward
propagation [14].

We can also derive the owner of a parent relation given its
child relation if the operation is reversible; that is, the par-
ent is fully derivable from the child. An example reversible
operation is scalar operations by known constants. This is
called backwards propagation [14]. Such techniques allow us
to fully infer the ownership and trust sets of all intermedi-
ate relations in a query plan; in future steps, we assume that
this inference has already been run.

Some systems also propagate trust by inferring ownership
of input relations using foreign-key relationships [19]. To
ensure that we don’t inadvertently leak correlated informa-
tion through a foreign-key relationship, the system performs
second-path analysis, which ensures that any further trusted
tables don’t leak information by verifying that any foreign-
key relationships point into the sensitive data columns, and
not out of. Thus, the trusted tables can’t implicitly embed
sensitive information.

3.3 Rewriting execution plans
Before we dive into how query optimization and IFC can ap-
ply in the big data query setting, we first take a look at how
these techniques have informed MPC itself. MPC compilers
take a program in some language (either domain-specific in
the case of FairPlay or Wysteria, or an extended language in
the case of Obliv-C) and compile it into an execution plan,
that may then be turned into garbled circuits. However,
the program itself can often be rewritten in ways to get the
compiler to create a faster program. The techniques speci-
fied in [9] model these programs as a simplified AST, then
apply rewrite rules exploiting associativity or distributivity
to improve MPC performance.

A key insight is that in an MPC program, each variable
belongs to some subset of the parties. Suppose we apply
the IFC tagging and inference techniques as laid out above.
Notice that any variable that belongs to all parties (i.e. has
all labels) can be computed on in the clear, and any variables
that are being combined with only variables that share the
same owner can be computed locally. Moreover, notice that
there isn’t an obvious way to compute on values in the clear
in the middle of a query plan without leaking information;
in other words, we can expect our query plans to have a
single ‘core’ of MPC, prepended and appended by in-the-
clear computation (this assumption isn’t actually true if we
relax our security definition, but suffices for now). Thus,
if we can rewrite our execution plans to have a maximal
amount of computation at the beginning and the end, more
work can be done in the clear and less in MPC. Note that

3



Figure 2: Forward application of distributive law

Figure 3: Backward application of distributive law

not all of our rewrite rules will actually reduce the total
amount of work done; but, it will try to move the work into
settings where it can run quicker.

We now explore some optimizations for a simplified arith-
metic language. Assume we have a language with variables
and binary operators which may be associative, commuta-
tive, and distributive over each other (e.g. addition and
multiplication). One clear optimization we can make lever-
aging associativity and commutativity is to flatten all oper-
ations of the same type and ensure that all inputs with a
common owner are combined first. That is; assume we have
2n input variables ai, bi that are all being combined in a
sum:

∑
i(ai + bi). We would much rather evaluate this sum

as (
∑

i ai) + (
∑

i bi), since we then incur one MPC-enabled
task instead of n.

The distributive law also allows us to eliminate excess MPC-
enabled operations. As shown in Figure 3.3 and Figure 3.3,
we can distribute either forward to eliminate an operation
or backward to create more local computation with a shared
public value. Both reduce the amount of MPC-enabled com-
putation in favor of local computation.

It’s clear that these optimizations should speed up our ex-
ecution plans, but how do we choose between them? This
problem is complicated by the fact that the space of opti-
mizations is not smooth; some optimizations may enable or
disable others. A heuristics-based approach, similar to that
of real database query optimization, works well. By estimat-
ing the cost of each execution plan and choosing the mini-
mum, we can arrive close to the optimal manually-optimized
execution. We can estimate the cost of each operator using
a table like in Figure 3.3, where λ is the security parame-
ter, or length of inputs [9]. The details of estimating cost
are complicated and implementation specific, so we eschew
a lengthy discussion on them.

3.4 Rewriting query plans
We now turn our attention to rewriting query plans in the
MPC setting. Many of the insights we’ve generated thus far
still apply. The main optimizations we are going to make
will reduce the amount of MPC being used by maximizing
the work done in cleartext in the beginning and end of the

Figure 4: Cost table

query plan.

Let’s first consider a simple example of join reordering. By
riffing on the original optimization, we can use join reorder-
ing to first combine multiple public tables, then combine
the result with a secret table; this can reduce the number
of secure joins from 2 to 1. Since joins commute, this is a
perfectly correct optimization to make [19].

Using rules like this and others like predicate pushdown,
moving the point at which MPC must be used towards the
center of the query plan is known as MPC frontier push-
down or push-up [14].

4. QUERY EXECUTION
There are a whole host of optimizations that we can apply
to relational operators themselves to make them run faster.
Indeed, especially when armed with knowledge about which
parties can be trusted with which data, we can offload data
in the execution phase to a trusted party that can do work
for us in the clear. We explore a suite of optimizations that
take advantage of what we’ve learned from query optimiza-
tion and IFC.

4.1 Splitting and slicing
Notice that filters and aggregates are splittable in the fed-
erated database setting. That is, we can split an arbitrary
filter or aggregate into partial evaluations that can first be
partially evaluated at a particular node then finished in
MPC, minimizing the amount of work done using MPC. We
detail how we can split filters and aggregates.

We could naively compute filters over a shared table by send-
ing all of the data into MPC and then running filters for each
tuple over all attributes. Alternatively, we could partially
evaluate a filter on all of the insensitive attributes locally
first, then use MPC to evaluate the filter over sensitive at-
tributes. To see why this is secure, notice that evaluating the
public attributes doesn’t contradict the security model, since
public attributes can’t leak data about private attributes (if
they did, we must have tagged our attributes improperly to
incur a functional dependency). Thus, whether we do it in
MPC or not doesn’t matter, so pulling it out is valid.

Similarly for aggregates, we could compute partial aggre-
gates over each input shard, then compute the full aggre-

4



gate from the partial aggregates using MPC. Notice that
this only works for associative aggregate functions (e.g. min,
max, and count, but not average). To see why this is secure,
recall that no party ever shares sensitive data with another
party. Thus, they will also not be able to reconstruct group-
by data from the other party. While parties may be able to
infer statistics about other parties using the output, this is
acceptable under the security model.

Notice also that joins don’t need to be evaluated using MPC
unless the join key is present in more that one data provider.
So, we compute all joins locally within a partition, so long
as that partition owns all of the rows of the join key. Since
no other party has inputs to this operation to begin with,
the security of this optimization boils down to nobody learn-
ing the output; since the output will either be used as an
MPC input (and therefore hidden) or revealed, this property
holds.

Lastly, we can cleverly slice our input data to allow paral-
lelizing query execution. Each operator decides on a slice
key which should be an expression over public attributes
that can divide up computation evenly. Each slice partition
is evaluated separately; care is taken to ensure that a slice
key doesn’t change the overall result of the operation.

4.2 Hybrid operators
Given information about each columns selectively-trusted
parties (STPs), we can try to split work-intensive opera-
tions like joins and aggregations into hybrid operators, which
outsource some portions of execution to a STP. We define
and flesh out two hybrid operators: hybrid joins and hybrid
aggregation [14].

Hybrid joins can be used if the key columns of both sides of
a join share a STP. The steps are as follows:

1. Parties obliviously shuffle the input relations.

2. Parties send only the key column to the STP.

3. STP enumerates the key-column relations it receives,
assigning an ID to each row.

4. STP computes a cleartext join on the enumerated key-
column relations.

5. STP secret-shares the result of the cleartext join to
untrusted parties.

6. Parties perform oblivious indexing to re-project each
enumerated row to its original row.

In short, the STP first learns only the key columns of both
sides (shuffled before revealed) and computes the intersec-
tion in the clear. Then, the result is secret-shared back out
to the untrusted parties, and intersecting values are linked
back to their original, unprojected rows. To see why this is
secure, notice that the STP doesn’t learn anything beyond
the key row that they were allowed to learn, and all other
parties receive just the join output. [14].

Hybrid aggregation can be used if the group-by column con-
tains an STP. The steps are as follows:

1. Parties obliviously shuffle the input relations.

2. Parties send only the group-by column to the STP.

3. STP enumerates the group-by-column relations it re-
ceives, assigning an ID to each row.

4. STP sorts by the group-by column, putting all rows
with the same group-by key next to one another.

5. STP computes an equality flag for each row, specifying
if its key it equal to the one before it in the sorted
relation.

6. STP secret-shares the equality flags to untrusted par-
ties and reveals the indexes in the clear.

7. Parties perform oblivious scan over the results, obliv-
iously aggregating the previous value to the current if
the equality flag is true.

In short, the STP first learns the group-by column (shuffled
before revealed), then enumerates the revealed keys. Lo-
cally, the STP shuffles by the group-by column, then com-
putes equality flags for each row, true iff the row has the
same group-by key as its predecessor in the sorted table. It
then secret-shares the indexes and equality flags to the un-
trusted parties. The untrusted parties then obliviously scan
and aggregate values according to the equality flag [14].

5. OBLIVIOUS SECURE ENCLAVES
Secure hardware may enable us to offload more MPC com-
putation into a trusted setting as well. There is an emerg-
ing class of hardware primitives called secure enclaves that
provide three security properties: isolate execution, sealing,
and remote attestation [19]. Enclaves are being developed
at Intel, AMD, and Apple, but all provide similar security
guarantees [7]. Isolated execution means that an enclave has
access to a subset of memory that no other process can ac-
cess, not even the OS. Sealing means that the enclave can
encrypt and decrypt data in such a way that only the enclave
can interact with it undetectably. Remote attestation means
that the enclave can prove that the code is running securely
in the device. Enclaves, however, do not provide access pat-
tern leakage attacks or side channel attacks. By monitor-
ing the number of page accesses or the amount of power
consumed by the enclave, attackers can still discern infor-
mation about what is being computed over. Side-channel
attacks are out of scope for this discussion; however, access
pattern attacks aren’t.

Systems have been develpoed that take advantage of these
enclaves to further enable MPC by developing a new host
of oblivious execution primitives for query execution [19].
In particular, these primitives protect against access pat-
tern attacks. Contrary to the semi-honest security model
we’ve interacted with thus far, we now assume adversary
that can control the entire software stack, including control
over network traffic, the operating system, and untrusted
memory accesses. However, the adversary cannot compro-
mise the enclave itself, nor any keys that the enclave holds.
The primary kind of attack we want to protect against are
access pattern attacks; to do so, we develop the notion of an
oblivious primitive.

5



Figure 5: Oblivious aggregation

5.1 Oblivious relational operators
The oblivious operators we explore rely chiefly on inter-
machine oblivious sorting, which allows a set of machines to
sort a table by some key without revealing anything about
their data. Given a block of oblivious memory, we can split
our data into block-sized chunks and quicksort each one,
then run bitonic sort over each block in an enclave to re-
cover the fully sorted result. We can further optimize this
by using column sort, which preserves the balance of the
partitions, preserving leakage of input table sizes. Given
oblivious sorting, we can construct oblivious filters, aggre-
gations, and joins in enclaves.

Oblivious filters are easy to implement; tag each row that
should be included with a ‘0’ and a ‘1’ otherwise, then run
oblivious sort by this new column. Then, remove all of the
‘1’ rows.

Oblivious aggregations are more complicated to implement.
The steps are as follows:

1. Sort by the grouping attribute to co-locate all elements
that should be in the same group.

2. Naively scanning and aggregating can leak the number
of values in each group. So instead, we repartition so
that each worker holds a contiguous set of the total
table.

3. Then, each worker outputs the statistic of the last row
it holds and sends it to the next worker, called a global
partial aggregate.

4. Upon receiving this value, each worker can calculate
the statistics for groups that spill over from the pre-
vious worker and that are totally contained in this
worker’s partition.

5. We finish by filtering out dummy records.

The diagram in Figure 5.1 explains this data flow.

Oblivous sort-merge joins are even more complicated to im-
plement. We describe an oblivious join that works when one
of the tables is being joined by a primary key, then show an
extension to arbitrary equi-joins. The steps are as follows:

1. We proceed in a similar fashion as in oblivious aggre-
gations by first unioning both the left table, Tl, and
right table, Tr, and then sorting by the join key. We
assume that we are joining on Tl’s primary key.

2. We repartition so that each worker holds a contiguous
set of the total unioned sorted table.

Figure 6: Oblivious join

3. Then, each worker outputs the last occurrence of a row
from Tl, if it exists, to the next worker.

4. Upon receiving this value, each worker can calculate
all of the rows that are supposed to join on the row
from the previous worker, and all rows that are totally
contained within this worker.

5. We finish by filtering out dummy records.

The diagram in Figure 5.1 explains this data flow. Extend-
ing this to arbitrary equi-joins is as easy as outputting the
last set of entries that share a common join key from Tl

instead of just the one record.

Using these operators, Opaque then runs cost-based query
optimization to choose an optimal query plan. Moreover,
the system allows users to specify the relative sensitivity of
tables to allow more work to be done in the clear. Both of
these optimizations harken back to prior discussion.

6. OTHER SOLUTIONS
MPC is far from the only solution to the problem is big data
analytics over federated databases. Another popular solu-
tion is fully homomorphically encrypted databases, which
leverage homomorphic encryption to answer queries over en-
crypted data. This flips the script on MPC by obscuring
the data itself, rather than the computation over the data.
Research has been done to make certain queries faster in
homomorphically encrypted databases [5], sometimes with
slight information leakage [8]. However, FHE don’t hide ac-
cess patterns, nor do they benefit from the same class of
optimizations as MPC does since all of the data is already
encrypted. While it can scale very nicely with the number
of parties, key management can become arduous, and it in-
curs a hefty slowdown on large datasets. Such databases in-
clude CryptDB, BlindSeer, Monomi, AlwaysEncrypted, and
Seabed. We thank [19] for this list.

Research has also been done on relying on trusted hardware
to execute computation. However, without work to make
computation oblivious, this approach may still be vulnera-
ble to access pattern attacks [19]. Such databases include
Haven, VC3, TrustedDB, TDB, and GnatDb. We once again
thank [19] for this list.

7. CONCLUSION
Scaling MPC to industry needs will be tricky. However,
we’ve seen a host of MPC-aware optimizations that incor-
porate MPC into the data processing pipeline nicely and
minimally in a move towards scalability. Query processing in
the trusted setting has been deeply researched; however, in

6



the untrusted setting with garbled circuits and secret shares
as new primitives, new optimizations abound.

MPC-aware query optimization techniques based somewhat
in traditional query optimization allow us to minimize the
amount of MPC used on a table level. MPC-aware informa-
tion flow analysis allows us an even finer level of control over
what data needs to be kept secure, and from whom. In the
execution layer, fine-grained knowledge of which parties can
know what data allow for increased offloading of execution.
And finally, secure hardware allows us to define new, safe
primitives for query evaluation in the MPC setting.

While MPC is not the only solution for big data analyt-
ics over federated databases, it is certainly an enticing op-
tion rife with opportunities for improvement. I hope this
has been a productive primer into the world of MPC-aware
query optimization!

8. REFERENCES
[1] M. Armbrust, Y. Huai, C. Liang, R. Xin, and

M. Zaharia. Deep dive into spark sql’s catalyst
optimizer. In
https://www.databricks.com/blog/2015/04/13/deep-
dive-into-spark-sqls-catalyst-optimizer.html, 2015.

[2] V. Attasena, J. Darmont, and N. Harbi. Secret
sharing for cloud data security. In The VLDB Journal
manuscript, 2017.

[3] J. Bater, G. Elliott, C. Eggen, S. Goel, A. Kho, and
J. Rogers. Smcql: Secure querying for federated
databases. In Proceedings of the VLDB Endowment
10.6, 2017.

[4] D. Bogdanov, S. Laur, and J. Willemson. Sharemind:
a framework for fast privacy-preserving computations.
In https://eprint.iacr.org/2008/289.pdf, 2008.

[5] C. Bösch, H. Pieter Hartel, W. Jonker, and A. Peter.
A survey of provably secure searchable encryption. In
ACM Computing Surveys 47.2, pages 18:1–18:51, 2014.

[6] K.-M. Chung and R. Pass. A simple oram. In
ASIACRYPT, pages 197-214, 2013.

[7] V. Costan and S. Devedas. Intel sgx explained. In
MIT CSAIL, 2016.

[8] Z. Espiritu. Time- and space-efficient aggregate range
queries on encrypted databases. In Brown University,
2022.

[9] F. Kerschbaum. Expression rewriting for optimizing
secure computation. In Proceedings of the 3rd ACM
Conference on Data and Application Security and
Privacy (CODASPY), 2013.

[10] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F.
Kaashoek, E. Kohler, and R. Morris. Information flow
control for standard os abstractions. In SOSP’07,
2007.

[11] A. Y. Levy, I. S. Mumick, and Y. Sagiv. Query
optimization by predicate move-around. In
Proceedings of the 20th VLDB Conference, 1994.

[12] Y. Lindell and B. Pinkas. A proof of security of yao’s
protocol for two-party computation. In
https://eprint.iacr.org/2004/175.pdf, 2004.

[13] A. Rastogi, M. A. Hammer, and M. Hicks. Wysteria:
A programming language for generic, mixed-mode
multiparty computations. In IEEE S&P 2014, 2014.

[14] N. Volgushev, M. Schwarzkopf, A. Lapets, M. Varia,
and A. Bestavros. Conclave: secure multi-party
computation on big data. In Proceedings of the 14th
ACM European Conference on Computer Systems
(EuroSys), 2019.

[15] A. Yip, X. Wang, N. Zeldovich, and M. F. Kaashoek.
Improving application security with data flow
assertions. In Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles - SOSP
’09, 2009.

[16] Y. Yu, M. Isard, D. Fettery, M. Budiu, U. Erlingsson,
P. K. Gunda, and J. Currey. Dryadlinq: A system for
general-purpose distributed data-parallel computing
using a high-level language. In 8th USENIX
Symposium on Operating Systems Design and
Implementation, 2008.

[17] M. Zaharia, M. Chowdhury, S. Michael Franklin, J
and. Shenker, and I. Stoica. Spark: Cluster computing
with working sets. In HotCloud 2010, 2010.

[18] S. Zahur and D. Evans. Obliv-c: A language for
extensible data-oblivious computation. In
http://eprint.iacr.org/2015/1153, 2015.

[19] W. Zheng, A. Dave, J. G. Beekman, R. Ada Popa,
J. E. Gonzalez, and I. Stoica. Opaque: An oblivious
and encrypted distributed analytics platform. In
Proceedings of the 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
’17), 2017.

7


